opencv python 基于KNN的手写体识别的实例

yipeiwu_com5年前Python基础

OCR of Hand-written Data using kNN

OCR of Hand-written Digits

我们的目标是构建一个可以读取手写数字的应用程序, 为此,我们需要一些train_data和test_data. OpenCV附带一个images digits.png(在文件夹opencv\sources\samples\data\中),它有5000个手写数字(每个数字500个,每个数字是20x20图像).所以首先要将图片切割成5000个不同图片,每个数字变成一个单行400像素.前面的250个数字作为训练数据,后250个作为测试数据.

import numpy as np
import cv2
import matplotlib.pyplot as plt

img = cv2.imread('digits.png')
gray = cv2.cvtColor(img,cv2.COLOR_BGR2GRAY)

# Now we split the image to 5000 cells, each 20x20 size
cells = [np.hsplit(row,100) for row in np.vsplit(gray,50)]

# Make it into a Numpy array. It size will be (50,100,20,20)
x = np.array(cells)

# Now we prepare train_data and test_data.
train = x[:,:50].reshape(-1,400).astype(np.float32) # Size = (2500,400)
test = x[:,50:100].reshape(-1,400).astype(np.float32) # Size = (2500,400)

# Create labels for train and test data
k = np.arange(10)
train_labels = np.repeat(k,250)[:,np.newaxis]
test_labels = train_labels.copy()

# Initiate kNN, train the data, then test it with test data for k=1
knn = cv2.ml.KNearest_create()
knn.train(train, cv2.ml.ROW_SAMPLE, train_labels)
ret,result,neighbours,dist = knn.findNearest(test,k=5)

# Now we check the accuracy of classification
# For that, compare the result with test_labels and check which are wrong
matches = result==test_labels
correct = np.count_nonzero(matches)
accuracy = correct*100.0/result.size
print( accuracy )

输出:91.76

进一步提高准确率的方法是增加训练数据,特别是错误的数据.每次训练时最好是保存训练数据,以便下次使用.

# save the data
np.savez('knn_data.npz',train=train, train_labels=train_labels)

# Now load the data
with np.load('knn_data.npz') as data:
  print( data.files )
  train = data['train']
  train_labels = data['train_labels']

OCR of English Alphabets

在opencv / samples / data /文件夹中附带一个数据文件letter-recognition.data.在每一行中,第一列是一个字母表,它是我们的标签. 接下来的16个数字是它的不同特征.

import numpy as np
import cv2
import matplotlib.pyplot as plt


# Load the data, converters convert the letter to a number
data= np.loadtxt('letter-recognition.data', dtype= 'float32', delimiter = ',',
          converters= {0: lambda ch: ord(ch)-ord('A')})

# split the data to two, 10000 each for train and test
train, test = np.vsplit(data,2)

# split trainData and testData to features and responses
responses, trainData = np.hsplit(train,[1])
labels, testData = np.hsplit(test,[1])

# Initiate the kNN, classify, measure accuracy.
knn = cv2.ml.KNearest_create()
knn.train(trainData, cv2.ml.ROW_SAMPLE, responses)
ret, result, neighbours, dist = knn.findNearest(testData, k=5)

correct = np.count_nonzero(result == labels)
accuracy = correct*100.0/10000
print( accuracy )

输出:93.06

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解python做UI界面的方法

详解python做UI界面的方法

一直以来都是用python脚本,执行的时候就是在终端直接命令执行,或者直接输入代码执行,最近为了方便他人使用,想做个界面,可以通过里面的控件菜单直接点击执行程序功能。 在文件夹中创建一...

python进程类subprocess的一些操作方法例子

subprocess.Popen用来创建子进程。 1)Popen启动新的进程与父进程并行执行,默认父进程不等待新进程结束。 复制代码 代码如下: def TestPopen(): &nb...

深入理解Python装饰器

装饰器简介: 装饰器(decorator)是一种高级Python语法。装饰器可以对一个函数、方法或者类进行加工。在Python中,我们有多种方法对函数和类进行加工,比如在Python闭包...

PyQT实现菜单中的复制,全选和清空的功能的方法

PyQt的文本操作的继承关系: QTextBrowser ( QtGui.QTextEdit) 其中QTextEdit具有的功能函数: copy() 复制 selectAll() 全选...

详解Python中的分组函数groupby和itertools)

具体代码如下所示: from operator import itemgetter #itemgetter用来去dict中的key,省去了使用lambda函数 from iterto...