pandas 中对特征进行硬编码和onehot编码的实现

yipeiwu_com6年前Python基础

首先介绍两种编码方式硬编码和onehot编码,在模型训练所需要数据中,特征要么为连续,要么为离散特征,对于那些值为非数字的离散特征,我们要么对他们进行硬编码,要么进行onehot编码,转化为模型可以用于训练的特征

初始化一个DataFrame

import pandas as pd
df = pd.DataFrame([
 ['green', 'M', 20, 'class1'],
 ['red', 'L', 21, 'class2'],
 ['blue', 'XL',30, 'class3']])
df.columns = ['color', 'size', 'weight', 'class label']

硬编码:

将feature的值从0(或者1)开始进行连续编码,比如color进行硬编码,color的值有三个,分别为编码为1,2,3

可以用如下操作,对color字段下的值进行硬编码

colorMap = {elem:index+1 for index,elem in enumerate(set(df["color"]))}
df['color'] = df['color'].map(colorMap)

这样可以进行硬编码了,之前我的写法是,先生成map,然后对每一行进行apply,显然没有上述代码简便

onehot编码:

将某个字段下所有值横向展开,对于每条数据,其在对应展开的值上的值就是1,听起来比较绕口,看下面的例子就知道了,python中,pandas 用get_dummies()方法即可

data1 = pd.get_dummies(df[["color"]])

如果要对多个feature 进行onehot,这样即可df[[fea1,fea2..]]

对于onehot以后的数据,如果需要原有的数据合并,直接拿原来的join onehot的数据即可

res = df.join(data1)

join操作默认是根据index来进行join的,而get_dummies()不会改变index

以上这篇pandas 中对特征进行硬编码和onehot编码的实现就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python使用numpy产生正态分布随机数的向量或矩阵操作示例

Python使用numpy产生正态分布随机数的向量或矩阵操作示例

本文实例讲述了Python使用numpy产生正态分布随机数的向量或矩阵操作。分享给大家供大家参考,具体如下: 简单来说,正态分布(Normal distribution)又名高斯分布(G...

opencv实现静态手势识别 opencv实现剪刀石头布游戏

opencv实现静态手势识别 opencv实现剪刀石头布游戏

本文实例为大家分享了opencv实现静态手势识别的具体代码,供大家参考,具体内容如下 要想运行该代码,请确保安装了:python 2.7,opencv 2.4.9 效果如下:...

python如何压缩新文件到已有ZIP文件

本文为大家分享了python压缩新文件到已有ZIP文件的具体代码,供大家参考,具体内容如下 要点在于使用Python标准库zipfile创建压缩文件时,如果使用'a'模式时,可以追加新内...

Python适配器模式代码实现解析

Python适配器模式,代码,思考等 # -*- coding: utf-8 -*- # author:baoshan class Computer: def __init__(...

利用Python如何生成随机密码

本位实例为大家分享了Python生成随机密码的实现过程,供大家参考,具体内容如下 写了个程序,主要是用来检测MySQL数据库的空密码和弱密码的, 在这里,定义了三类弱密码: 1. 连续数...