使用Python如何测试InnoDB与MyISAM的读写性能

yipeiwu_com5年前Python基础

前言

由于近期有个项目对系统性能要求很高,技术选型上由于种种原因已经确定使用Mysql数据库,接下来就是要确定到底使用哪种存储引擎。我们的应用是典型的写多读少,写入内容为也很短,对系统的稳定性要求很高。所以存储引擎肯定就定在广泛使用的Innodb和MyISAM之中了。

至于两者的比较网上也有很多,但是毕竟这个事情也不复杂,决定还是自己来做,去验证一下在我们的场景下谁更优。

本文测试所用工具版本如下:

Tools Version
MySQL 5.7.18
Python 3.6
Pandas 0.23

① 创建数据表

首先我们需要把两张使用了不同引擎的表创建出来,使用为了方便起见,我们直接使用Navicat创建了两张 员工信息表,具体字段如下:

使用InnoDB引擎的表,设计表名为innodb,选项如下:

 

使用InnoDB引擎的表,设计表名为myisam,选项如下:

 

因为是简单操作,创建的具体细节就不详述了,至此,我们的数据库就把使用 InnoDB 和 MyISAM 两种引擎的表创建好了。

② 单线程写入性能对比

1. InnoDB 引擎

执行以下代码,往使用了InnoDB引擎的表格插入1000条数据

import pandas as pd
from sqlalchemy import create_engine
import time

db = create_engine('mysql+pymysql://mysql:123456@127.0.0.1:3306/test')
start = time.time()

for i in range(1000):
 data = {'index': i,
   'name': 'name_' + str(i),
   'age': i,
   'salary': i,
   'level': i}
 df = pd.DataFrame(data, index=[0])
 df.to_sql('innodb', db, if_exists='append', index=False)

end = time.time()
print(end - start)

执行3次上面的代码,得到程序写入1000条数据的时间分别为:12.58s、14.10s、12.71s,平均写入时间为 13.13s。

2. MyISAM 引擎

执行以下代码,往使用了MyISAM引擎的表格插入1000条数据

import pandas as pd
from sqlalchemy import create_engine
import time

db = create_engine('mysql+pymysql://mysql:123456@127.0.0.1:3306/test')
start = time.time()

for i in range(1000):
 data = {'index': i,
   'name': 'name_' + str(i),
   'age': i,
   'salary': i,
   'level': i}
 df = pd.DataFrame(data, index=[0])
 df.to_sql('myisam', db, if_exists='append', index=False)

end = time.time()
print(end - start)

执行3次上面的代码,得到程序写入1000条数据的时间分别为:6.64s、6.99s、7.29s,平均写入时间为 6.97s。

两种引擎的单线程写入速度对比如下:

结论:单线程的情况下,MyISAM引擎的写入速度比InnoDB引擎的写入速度快88%

③ 多线程写入性能对比

1. InnoDB 引擎

执行以下代码,往使用了InnoDB引擎的表格插入1000条数据

import pandas as pd
from sqlalchemy import create_engine
import time
from concurrent.futures import ThreadPoolExecutor

db = create_engine('mysql+pymysql://mysql:123456@127.0.0.1:3306/test')
start = time.time()

data_lst = [{'index': i,
    'name': 'name_' + str(i),
    'age': i,
    'salary': i,
    'level': i} for i in range(1000)]

def write(data):
 df = pd.DataFrame(data, index=[0])
 df.to_sql('innodb', db, if_exists='append', index=False)

def execute():
 with ThreadPoolExecutor(max_workers=5) as executor:
  executor.map(write, data_lst)

execute()

end = time.time()
print(end - start)

执行3次上面的代码,得到程序写入1000条数据的时间分别为:4.98s、4.84s、4.88s,平均写入时间为 4.9s。

2. MyISAM 引擎

执行以下代码,往使用了MyISAM引擎的表格插入1000条数据

import pandas as pd
from sqlalchemy import create_engine
import time
from concurrent.futures import ThreadPoolExecutor

db = create_engine('mysql+pymysql://mysql:123456@127.0.0.1:3306/test')
start = time.time()

data_lst = [{'index': i,
    'name': 'name_' + str(i),
    'age': i,
    'salary': i,
    'level': i} for i in range(1000)]

def write(data):
 df = pd.DataFrame(data, index=[0])
 df.to_sql('myisam', db, if_exists='append', index=False)

def execute():
 with ThreadPoolExecutor(max_workers=5) as executor:
  executor.map(write, data_lst)

execute()

end = time.time()
print(end - start)

执行3次上面的代码,得到程序写入1000条数据的时间分别为:3.29s、3.62s、3.47s,平均写入时间为 3.46s。

两种引擎的多线程写入速度对比如下:

结论:多线程的情况下,MyISAM引擎的写入速度比InnoDB引擎的写入速度快42%

④ 读取性能对比

为了获得数据量较大的表用于测试数据库的读取性能,我们循环执行10遍上面多线程写入数据的操作,得到两张数据量为10000条数据的表格,然后读取10遍该表格,获取读取时间

1. InnoDB 引擎

执行以下代码,读取10遍使用了InnoDB引擎的表格

import pandas as pd
from sqlalchemy import create_engine
import time

db = create_engine('mysql+pymysql://mysql:123456@127.0.0.1:3306/test')
start = time.time()

for _ in range(10):
 df = pd.read_sql('innodb', db)

end = time.time()
print(end - start)

执行3次上面的代码,得到程序10次读取10000条数据的时间分别为:28.94s、28.88s、28.48s,平均写入时间为 28.77s。

2. MyISAM 引擎

执行以下代码,读取10遍使用了MyISAM引擎的表格

import pandas as pd
from sqlalchemy import create_engine
import time

db = create_engine('mysql+pymysql://mysql:123456@127.0.0.1:3306/test')
start = time.time()

for _ in range(10):
 df = pd.read_sql('innodb', db)

end = time.time()
print(end - start)

执行3次上面的代码,得到程序10次读取10000条数据的时间分别为:28.51s、29.12s、28.76s,平均写入时间为 28.8s。

两种引擎的读取速度对比如下:

结论:MyISAM引擎和InnoDB引擎的读取速度无明显差异

⑤ 总结

1. 写入速度,MyISAM比InnoDB快,单线程的情况下,两者差异尤为明显

2. 读取速度,InnoDB和MyISAM无明显差异

好了,以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,如果有疑问大家可以留言交流,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

Python 实现简单的电话本功能

myPhoneBook2.py #!/usr/bin/python # -*- coding: utf-8 -*- import re class PhoneBook(object)...

Python wxPython库Core组件BoxSizer用法示例

Python wxPython库Core组件BoxSizer用法示例

本文实例讲述了Python wxPython库Core组件BoxSizer用法。分享给大家供大家参考,具体如下: wx.BoxSizer: box = wx.BoxSizer(int...

Python3使用Matplotlib 绘制精美的数学函数图形

Python3使用Matplotlib 绘制精美的数学函数图形

一个最最简单的例子: 绘制一个从 0 到 360 度完整的 SIN 函数图形 import numpy as np import matplotlib.pyplot as pt x...

对python 中re.sub,replace(),strip()的区别详解

对python 中re.sub,replace(),strip()的区别详解

1.strip(): str.strip([chars]);去除字符串前面和后面的所有设置的字符串,默认为空格 chars -- 移除字符串头尾指定的字符序列。 st = " he...

python3利用venv配置虚拟环境及过程中的小问题小结

python3利用venv配置虚拟环境及过程中的小问题小结

在利用python进行flask等开发过程中经常需要配置虚拟环境以方便针对不同的项目需求配置不同的生产环境。在python3.3之前,需要利用virtualenv等工具来实现python...