python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

一个基于flask的web应用诞生(1)

一个基于flask的web应用诞生(1)

基于flask的web应用的诞生,供大家参考,具体内容如下 Flask是一个非常优秀的web框架,它最大的特点就是保持一个简单而易于扩展的小核心,其他的都有用户自己掌握,并且方便替换,...

Python多进程multiprocessing.Pool类详解

Python多进程multiprocessing.Pool类详解

multiprocessing模块 multiprocessing包是Python中的多进程管理包。它与 threading.Thread类似,可以利用multiprocessing.P...

python 根据正则表达式提取指定的内容实例详解

python 根据正则表达式提取指定的内容 正则表达式是极其强大的,利用正则表达式来提取想要的内容是很方便的事。   下面演示了在python里,通过正则表达式来提...

python3 selenium自动化 下拉框定位的例子

python3 selenium自动化 下拉框定位的例子

我们在做web UI自动化时,经常会碰到下拉框,如下图: 所上图,下拉框的源代码如下: <html1> <head></head> <...

Python3 入门教程 简单但比较不错

本文适合有Java编程经验的程序员快速熟悉Python 本文程序在windows xp+python3.1a1 测试通过. 本文提到的idle指python shell,即安装pytho...