python 划分数据集为训练集和测试集的方法

yipeiwu_com5年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

浅谈python迭代器

1、yield,将函数变为 generator (生成器) 例如:斐波那契数列 def fib(num): a, b, c = 1, 0, 1     while a <...

python双向链表原理与实现方法详解

本文实例讲述了python双向链表原理与实现方法。分享给大家供大家参考,具体如下: 双向链表 一种更复杂的链表是“双向链表”或“双面链表”。每个节点有两个链接:一个指向前一个节点,当此节...

python3 实现的人人影视网站自动签到

这是一个自动化程度较高的程序,运行本程序后会从chrome中读取cookies用于登录人人影视签到, 并且会自动添加一个windows 任务计划,这个任务计划每天下午两点会执行本程序进行...

Python脚本获取操作系统版本信息

Python脚本获取操作系统版本信息

查看系统版本信息是一件家常便饭的事情,有时候需要将版本信息录入到资产管理系统中,如果每次手动的去查询这些信息再录入系统那么是一件令人呢头疼的事情,如果采用脚本去完成这件事情,那么情况就有...

Python数据处理numpy.median的实例讲解

numpy模块下的median作用为: 计算沿指定轴的中位数 返回数组元素的中位数 其函数接口为: median(a, axis=None, out=None, overwri...