python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python将邻接矩阵输出成图的实现

python将邻接矩阵输出成图的实现

利用networkx,numpy,matplotlib,将邻接矩阵输出为图形。 1,自身确定一个邻接矩阵,然后通过循环的方式添加变,然后输出图像 import networkx as...

python分布式环境下的限流器的示例

项目中用到了限流,受限于一些实现方式上的东西,手撕了一个简单的服务端限流器。 服务端限流和客户端限流的区别,简单来说就是: 1)服务端限流 对接口请求进行限流,限制的是单位时间内请求的数...

python 排序算法总结及实例详解

python 排序算法总结及实例详解

总结了一下常见集中排序的算法 归并排序 归并排序也称合并排序,是分治法的典型应用。分治思想是将每个问题分解成个个小问题,将每个小问题解决,然后合并。 具体的归并排序就是,将一组无序数...

解决Python二维数组赋值问题

解决Python二维数组赋值问题

当我们采用s=[[0]*3]*2初始化一个数组,然后对s[0][0]进行赋值,改变的是第一列所有的值。因为用s = [[0]*3]*2 初始化数组,他表示的是指向这个列表的引用,所以当你...

使用Python的PEAK来适配协议的教程

如果您正尝试去处理元类,或者正受困于 Twisted 中的异步编程,或者正在研究由于使用了多分派而使您精疲力尽的面向对象编程,那么您完全错了!PEAK 将所有这些中的一些要素组合到了一个...