python 划分数据集为训练集和测试集的方法

yipeiwu_com5年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python下解压缩zip文件并删除文件的实例

利用python下载数据,下载下来的数据为zip格式,因为有上千个这样的文件,因此便直接在爬虫程序里加入了解压缩zip文件的内容,并且因为数据量较大,为了节省空间,便在解压缩后立即删除该...

python中itertools模块zip_longest函数详解

最近在看流畅的python,在看第14章节的itertools模块,对其itertools中的相关函数实现的逻辑的实现 其中在zip_longest(it_obj1, ..., it_o...

Python中有趣在__call__函数

Python中有一个有趣的语法,只要定义类型的时候,实现__call__函数,这个类型就成为可调用的。 换句话说,我们可以把这个类型的对象当作函数来使用,相当于 重载了括号运算符。...

Python中用memcached来减少数据库查询次数的教程

本来我一直不知道怎么来更好地优化网页的性能,然后最近做python和php同类网页渲染速度比较时,意外地发现一个很简单很白痴但是 我一直没发现的好方法(不得不BS我自己):直接像某些ph...

Python中判断子串存在的性能比较及分析总结

起步 对于子串搜索,Python提供了多种实现方式:in, find, index, __contains__,对其进行性能比较: import timeit def in_(s...