python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python加密方法小结【md5,base64,sha1】

本文实例总结了python加密方法。分享给大家供大家参考,具体如下: MD5加密: def md5(str): import hashlib m = hashlib.md5(...

python模拟表单提交登录图书馆

python模拟表单提交登录图书馆

本文实例为大家分享了python模拟登录图书馆的具体代码,供大家参考,具体内容如下 模拟表单提交的原理: 我们都知道Http是无状态的,所以当我们提交的数据和浏览器中正常提交一样,那么...

遍历python字典几种方法总结(推荐)

如下所示: aDict = {'key1':'value1', 'key2':'value2', 'key3':'value3'} print '-----------dict---...

Python 基于Twisted框架的文件夹网络传输源码

Python 基于Twisted框架的文件夹网络传输源码

由于文件夹可能有多层目录,因此需要对其进行递归遍历。 本文采取了简单的协议定制,定义了五条命令,指令Head如下: Sync:标识开始同步文件夹 End:标识结束同步 File:标识传输...

python3如何将docx转换成pdf文件

本文实例为大家分享了python3将docx转换成pdf文件的具体代码,供大家参考,具体内容如下 直接上代码 # -*- encoding:utf-8 -*- """ auth...