python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3.4 将16进制转成字符串的实例

将socket收到的16进制转成字符串 def hex_to_str(b): s = '' for i in b: s += '{0:0>2}'.format...

python高斯分布概率密度函数的使用详解

python高斯分布概率密度函数的使用详解

如下所示: import matplotlib.pyplot as plt import numpy as np from scipy import stats from matpl...

查看Django和flask版本的方法

查看Django版本 检查是否安装成功,可以在dos下查看Django版本。 1.输入python 2.输入import django 3.输入django.get_version()...

初步介绍Python中的pydoc模块和distutils模块

pydoc Ka-Ping Yee 曾创建了一个相当著名的模块,名叫 pydoc (比较而言: pydoc 可以做到 perldoc 所能做的任何事,并且做得更好、更漂亮:-)。对于 P...

Django中反向生成models.py的实例讲解

命令行中进入Django项目目录,执行 python manage.py inspectdb testmodel_test 其中testmodel_test为数据表,生成的结果...