python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python多线程处理实例详解【单进程/多进程】

Python多线程处理实例详解【单进程/多进程】

本文实例讲述了Python多线程处理操作。分享给大家供大家参考,具体如下: python — 多线程处理 1、一个进程执行完后,继续下一个进程 root@72132server:~#...

Python中的模块导入和读取键盘输入的方法

导入模块 import 语句 想使用Python源文件,只需在另一个源文件里执行import语句,语法如下: import module1[, module2[,... modul...

python: line=f.readlines()消除line中\n的方法

python: line=f.readlines()消除line中\n的方法

测试代码 #!/ust/bin/env python3 f = open("name.txt") date = f.readlines() print(date) f.close(...

Python实现七彩蟒蛇绘制实例代码

Python实现七彩蟒蛇绘制实例代码

本文主要研究的是Python编程turtle的实例,绘制一个七彩蟒蛇。。具体如下。 第2周的课后练习里,有一道题目,要求修改“蟒蛇绘制”程序,对Python 蟒蛇的每个部分采用不同颜色,...

python中去空格函数的用法

本文简单介绍了Python中去空格函数的用法,这是一个很实用的函数,希望对大家的Python程序设计有所帮助。具体分析如下: 在Python中字符串处理函数里有三个去空格的函数: str...