python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Ubuntu下升级 python3.7.1流程备忘(推荐)

Ubuntu下升级 python3.7.1流程备忘(推荐)

下载源码 wget https://www.python.org/ftp/python/3.7.1/Python-3.7.1.tgz 解压源码 tar -xvzf Python-3.7....

Python 利用pydub库操作音频文件的方法

最近使用Python调用百度的REST API实现语音识别,但是百度要求音频文件的压缩方式只能是pcm(不压缩)、wav、opus、speex、amr,这里面也就wav还常见一点,但是一...

PyTorch实现更新部分网络,其他不更新

torch.Tensor.detach()的使用 detach()的官方说明如下: Returns a new Tensor, detached from the current gra...

Python常用的日期时间处理方法示例

#-*- coding: utf-8 -*- import datetime #给定日期向后N天的日期 def dateadd_day(days): d1 = datetim...

Python 实现数组相减示例

问题描述: 有2个数组如下 a = [3,3,3,4,4,4,5,6,7] b = [3,3,4,4] 第1题:从数组a中删除所有在数组b中出现过的元素。对于上例来说,a删除结束...