python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Pytorch 实现计算分类器准确率(总分类及子分类)

分类器平均准确率计算: correct = torch.zeros(1).squeeze().cuda() total = torch.zeros(1).squeeze().cuda...

python遍历文件夹下所有excel文件

大数据处理经常要用到一堆表格,然后需要把数据导入一个list中进行各种算法分析,简单讲一下自己的做法: 1.如何读取excel文件 网上的版本很多,在xlrd模块基础上,找到一些源码...

对Python新手编程过程中如何规避一些常见问题的建议

这篇文章收集了我在Python新手开发者写的代码中所见到的不规范但偶尔又很微妙的问题。本文的目的是为了帮助那些新手开发者渡过写出丑陋的Python代码的阶段。为了照顾目标读者,本文做了一...

Python TCPServer 多线程多客户端通信的实现

Python TCPServer 多线程多客户端通信的实现

最简单、原始的TCP通信demo 服务端Http请求: import socket # 创建一个servicesocke serviceSocket = socket.socket...

python中将字典转换成其json字符串

#这是Python中的一个字典 dic = { 'str': 'this is a string', 'list': [1, 2, 'a', 'b'], 'sub_dic': {...