python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python的格式化输出(format,%)实例详解

皇城PK Python中格式化字符串目前有两种阵营:%和format,我们应该选择哪种呢? 自从Python2.6引入了format这个格式化字符串的方法之后,我认为%还是format这...

Python matplotlib绘制饼状图功能示例

Python matplotlib绘制饼状图功能示例

本文实例讲述了Python matplotlib绘制饼状图功能。分享给大家供大家参考,具体如下: 一 代码 import numpy as np import matplotlib....

浅谈python中scipy.misc.logsumexp函数的运用场景

scipy.misc.logsumexp函数的输入参数有(a, axis=None, b=None, keepdims=False, return_sign=False),具体配置可参见...

python实现跨文件全局变量的方法

在使用Python编写的应用的过程中,有时候会遇到多个文件之间传递同一个全局变量的情况。本文就此给出了如下的解决方法供大家参考。 文件1:globalvar.py #!/usr/bi...

疯狂上涨的Python 开发者应从2.x还是3.x着手?

疯狂上涨的Python 开发者应从2.x还是3.x着手?

纵观各大编程语言在 2017 年的发展情况,我们会发现涌现出诸如 Go、Swift 这类后起之秀,而其中最为耀眼的当属 Python。之所以 Python 如此受捧,不仅仅是人工智能、数...