python 划分数据集为训练集和测试集的方法

yipeiwu_com6年前Python基础

sklearn的cross_validation包中含有将数据集按照一定的比例,随机划分为训练集和测试集的函数train_test_split

from sklearn.cross_validation import train_test_split
#x为数据集的feature熟悉,y为label.
x_train, x_test, y_train, y_test = train_test_split(x, y, test_size = 0.3)

得到的x_train,y_train(x_test,y_test)的index对应的是x,y中被抽取到的序号。

若train_test_split传入的是带有label的数据,则如下代码:

from sklearn.cross_validation import train_test_split
#dat为数据集,含有feature和label.
train, test = train_test_split(dat, test_size = 0.3)

train,test含有feature和label的。

自己写了一个函数:

#X:含label的数据集:分割成训练集和测试集
#test_size:测试集占整个数据集的比例
def trainTestSplit(X,test_size=0.3):
 X_num=X.shape[0]
 train_index=range(X_num)
 test_index=[]
 test_num=int(X_num*test_size)
 for i in range(test_num):
  randomIndex=int(np.random.uniform(0,len(train_index)))
  test_index.append(train_index[randomIndex])
  del train_index[randomIndex]
 #train,test的index是抽取的数据集X的序号
 train=X.ix[train_index] 
 test=X.ix[test_index]
 return train,test

以上这篇python 划分数据集为训练集和测试集的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python读取视频的两种方法(imageio和cv2)

用python读取视频有两种主要方法,大家可依据自己的需求进行使用。 方法一: 使用imageio库,没有安装的可用pip安装或自己下载,安装好后重启终端即可调用。 import p...

使用python编写监听端

本文实例为大家分享了python编写监听端的具体代码,供大家参考,具体内容如下 import socket import time import sys import stri...

python3 模拟登录v2ex实例讲解

闲的无聊。。。 网上一堆,正好练手(主要是新手) # coding=utf-8 import requests from bs4 import BeautifulSoup he...

使用urllib库的urlretrieve()方法下载网络文件到本地的方法

使用urllib库的urlretrieve()方法下载网络文件到本地的方法

概述 见源码 源码 # !/usr/bin/env python # -*- coding:utf-8 -*- """ 图片(文件)下载,核心方法是 urllib.urlre...

在pycharm中使用git版本管理以及同步github的方法

在pycharm中使用git版本管理以及同步github的方法

注意:首先你电脑必须安装git版本控制器(软件),在官网下载即可。 pycharm中使用git以及github很简单,首先在设置中搜索github: 点击右边的Create API T...