浅谈Pandas:Series和DataFrame间的算术元素

yipeiwu_com6年前Python基础

如下所示:

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

一、Series与Series

s1 = Series([1,3,5,7],index=['a','b','c','d'])
s2 = Series([2,4,6,8],index=['a','b','c','e'])

索引对齐项相加,不对齐项的值取NaN

s1+s2
1
a  3.0
b  7.0
c 11.0
d  NaN
e  NaN
dtype: float64

二、DataFrame与DataFrame

data1 = {'水果':['苹果','梨','草莓'],
  '数量':[3,2,5],
  '价格':[10,9,8]}
data2 = {'数量':[3,2,5,6],
  '价格':[10,9,8,7]}
df1 = DataFrame(data1)
df2 = DataFrame(data2)

在行和列上同时对齐后进行计算,如果找不到对应项则取NaN

print(df1*df2)
  价格 数量 水果
0 100.0 9.0 NaN
1 81.0 4.0 NaN
2 64.0 25.0 NaN
3 NaN NaN NaN

三、Series与DataFrame

1.利用广播实现DataFrame与某行的运算

print(df2+df2.iloc[0]) # 将第0行加到所有行上
 价格 数量
0 20 6
1 19 5
2 18 8
3 17 9

2.利用广播实现DataFrame与某列的运算(指定轴axis=0)

print(df2.sub(df2.iloc[:,0],axis=0))
 价格 数量
0 0 -7
1 0 -7
2 0 -3
3 0 -1

3.运算时如果无法对齐,则填充NaN

s = Series([1,1,1],index=['数量','价格','重量'])
print(df2+s)
 价格 数量 重量
0 11 4 NaN
1 10 3 NaN
2 9 6 NaN
3 8 7 NaN

以上这篇浅谈Pandas:Series和DataFrame间的算术元素就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python+selenium实现自动化百度搜索关键词

python+selenium实现自动化百度搜索关键词

通过python配合爬虫接口利用selenium实现自动化打开chrome浏览器,进行百度关键词搜索。 1、安装python3,访问官网选择对应的版本安装即可,最新版为3.7。 2、安...

pandas的qcut()方法详解

pandas的qcut()方法详解

pandas的qcut可以把一组数字按大小区间进行分区,比如 data = pd.Series([0,8,1,5,3,7,2,6,10,4,9]) 比如我要把这组数据分成两部分,一...

Python闭包和装饰器用法实例详解

本文实例讲述了Python闭包和装饰器用法。分享给大家供大家参考,具体如下: Python的装饰器的英文名叫Decorator,作用是完成对一些模块的修饰。所谓修饰工作就是想给现有的模块...

python删除过期log文件操作实例解析

本文研究的主要是python删除过期log文件的相关内容,具体介绍如下。 1. 用Python遍历目录 os.walk方法可以很方便的得到目录下的所有文件,会返回一个三元的tupple...

Python 读取串口数据,动态绘图的示例

Python 读取串口数据,动态绘图的示例

最近工作需要把单片机读取的传感器电压数据实时在PC上通过曲线显示出来,刚好在看python, 就试着用了python 与uart端口通讯,并且通过matplotlib.pyplot 模块...