浅谈Pandas:Series和DataFrame间的算术元素

yipeiwu_com6年前Python基础

如下所示:

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

一、Series与Series

s1 = Series([1,3,5,7],index=['a','b','c','d'])
s2 = Series([2,4,6,8],index=['a','b','c','e'])

索引对齐项相加,不对齐项的值取NaN

s1+s2
1
a  3.0
b  7.0
c 11.0
d  NaN
e  NaN
dtype: float64

二、DataFrame与DataFrame

data1 = {'水果':['苹果','梨','草莓'],
  '数量':[3,2,5],
  '价格':[10,9,8]}
data2 = {'数量':[3,2,5,6],
  '价格':[10,9,8,7]}
df1 = DataFrame(data1)
df2 = DataFrame(data2)

在行和列上同时对齐后进行计算,如果找不到对应项则取NaN

print(df1*df2)
  价格 数量 水果
0 100.0 9.0 NaN
1 81.0 4.0 NaN
2 64.0 25.0 NaN
3 NaN NaN NaN

三、Series与DataFrame

1.利用广播实现DataFrame与某行的运算

print(df2+df2.iloc[0]) # 将第0行加到所有行上
 价格 数量
0 20 6
1 19 5
2 18 8
3 17 9

2.利用广播实现DataFrame与某列的运算(指定轴axis=0)

print(df2.sub(df2.iloc[:,0],axis=0))
 价格 数量
0 0 -7
1 0 -7
2 0 -3
3 0 -1

3.运算时如果无法对齐,则填充NaN

s = Series([1,1,1],index=['数量','价格','重量'])
print(df2+s)
 价格 数量 重量
0 11 4 NaN
1 10 3 NaN
2 9 6 NaN
3 8 7 NaN

以上这篇浅谈Pandas:Series和DataFrame间的算术元素就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3调用windows dos命令的例子

最近游戏项目在多个国家上线,每个国家都对应两份儿svn目录(一份是本地策划目录,一份是线上目录)。于是乎维护变得很烦躁。需要先更新本地策划svn目录,然后把更新的文件拷贝到对应的线上目录...

Python with标签使用方法解析

这篇文章主要介绍了Python with标签使用方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1.在python DTL模板...

python通过TimedRotatingFileHandler按时间切割日志

python通过TimedRotatingFileHandler按时间切割日志

通过TimedRotatingFileHandler按时间切割日志 线上跑了一个定时脚本,每天生成的日志文件都写在了一个文件中。但是日志信息不可能输出到单一的一个文件中。 原因有二:1....

浅谈Python3中strip()、lstrip()、rstrip()用法详解

简单来说,三种方法是为了删除字符串中不同位置的指定字符。其中,strip()用于去除字符串的首尾字符,同理,lstrip()用于去除左边的字符,rstrip()用于去除右边的字符 Py...

Tensorflow 利用tf.contrib.learn建立输入函数的方法

Tensorflow 利用tf.contrib.learn建立输入函数的方法

在实际的业务中,可能会遇到很大量的特征,这些特征良莠不齐,层次不一,可能有缺失,可能有噪声,可能规模不一致,可能类型不一样,等等问题都需要我们在建模之前,先预处理特征或者叫清洗特征。那么...