浅谈Pandas:Series和DataFrame间的算术元素

yipeiwu_com5年前Python基础

如下所示:

import numpy as np
import pandas as pd
from pandas import Series,DataFrame

一、Series与Series

s1 = Series([1,3,5,7],index=['a','b','c','d'])
s2 = Series([2,4,6,8],index=['a','b','c','e'])

索引对齐项相加,不对齐项的值取NaN

s1+s2
1
a  3.0
b  7.0
c 11.0
d  NaN
e  NaN
dtype: float64

二、DataFrame与DataFrame

data1 = {'水果':['苹果','梨','草莓'],
  '数量':[3,2,5],
  '价格':[10,9,8]}
data2 = {'数量':[3,2,5,6],
  '价格':[10,9,8,7]}
df1 = DataFrame(data1)
df2 = DataFrame(data2)

在行和列上同时对齐后进行计算,如果找不到对应项则取NaN

print(df1*df2)
  价格 数量 水果
0 100.0 9.0 NaN
1 81.0 4.0 NaN
2 64.0 25.0 NaN
3 NaN NaN NaN

三、Series与DataFrame

1.利用广播实现DataFrame与某行的运算

print(df2+df2.iloc[0]) # 将第0行加到所有行上
 价格 数量
0 20 6
1 19 5
2 18 8
3 17 9

2.利用广播实现DataFrame与某列的运算(指定轴axis=0)

print(df2.sub(df2.iloc[:,0],axis=0))
 价格 数量
0 0 -7
1 0 -7
2 0 -3
3 0 -1

3.运算时如果无法对齐,则填充NaN

s = Series([1,1,1],index=['数量','价格','重量'])
print(df2+s)
 价格 数量 重量
0 11 4 NaN
1 10 3 NaN
2 9 6 NaN
3 8 7 NaN

以上这篇浅谈Pandas:Series和DataFrame间的算术元素就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用python获取电脑的磁盘信息方法

使用Python获取电脑的磁盘信息需要借助于第三方的模块psutil,这个模块需要自己安装,纯粹的CPython下面不具备这个功能。 在iPython交互界面中进行如下演示: 查看电脑的...

elasticsearch python 查询的两种方法

elasticsearch python 查询的两种方法

elasticsearch python 查询的两种方法,具体内容如下所述: from elasticsearch import Elasticsearch es = Elastic...

python实现telnet客户端的方法

本文实例讲述了python实现telnet客户端的方法。分享给大家供大家参考。具体如下: python实现的telnet客户端程序,python自带一个telnetlib模块,可以通过其...

如何使用 Pylint 来规范 Python 代码风格(来自IBM)

Pylint 是什么 Pylint 是一个 Python 代码分析工具,它分析 Python 代码中的错误,查找不符合代码风格标准(Pylint 默认使用的代码风格是 PEP 8,具体信...

在Python中居然可以定义两个同名通参数的函数

在Python中居然可以定义两个同名通参数的函数

一个意外的场景,我发现Python模块中是可以定义相同的名称和参数的函数的, 虽然在eclipse中报错了,但是执行时没有问题的,这个是IDE的问题。 其中的含义是因为第一个函数原本由...