对pandas写入读取h5文件的方法详解

yipeiwu_com5年前Python基础

1、引言

通过参考相关博客对hdf5格式简要介绍。

hdf5在存储的是支持压缩,使用的方式是blosc,这个是速度最快的也是pandas默认支持的。 使用压缩可以提磁盘利用率,节省空间。 开启压缩也没有什么劣势,只会慢一点点。 压缩在小数据量的时候优势不明显,数据量大了才有优势。 同时发现hdf读取文件的时候只能是一次写,写的时候可以append,可以put,但是写完成了之后关闭文件,就不能再写了, 会覆盖。

另外,为什么单独说pandas,主要因为本人目前对于h5py这个包的理解不是很深入,不知道如果使用该包存pd.DataFrame格式的文件,不像numpy格式文件可以直接存储,因此本人只能依赖pandas自带一些函数进行处理。

2、写入文件

使用函数:pd.HDFStore

import numpy as np
import pandas as pd
####生成9000,0000条数据,9千万条
a = np.random.standard_normal((90000000,4))
b = pd.DataFrame(a)
####普通格式存储:
h5 = pd.HDFStore('/data/stock/test_s.h5','w')
h5['data'] = b
h5.close()

####压缩格式存储
h5 = pd.HDFStore('/data/stock/test_c4.h5','w', complevel=4, complib='blosc')
h5['data'] = b
h5.close()

3、读取文件

使用函数:pd.read_hdf

参数:文件名,key

data=pd.read_hdf('/data/stock/test_c4.h5',key='data')

以上这篇对pandas写入读取h5文件的方法详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现搜索算法的实例代码

将数据存储在不同的数据结构中时,搜索是非常基本的必需条件。最简单的方法是遍历数据结构中的每个元素,并将其与您正在搜索的值进行匹配。这就是所谓的线性搜索。它效率低下,很少使用,但为它创建一...

在PyCharm中三步完成PyPy解释器的配置的方法

在PyCharm中三步完成PyPy解释器的配置的方法

介绍方法之前,我们先说说Python的解释器,由于Python是动态编译的语言,和C/C++、Java或者Kotlin等静态语言不同,它是在运行时一句一句代码地边编译边执行的,而Java...

Python控制Firefox方法总结

Python控制Firefox方法总结

有时候为了自动化测试网页,我们往往希望能够使用一些脚本语言控制浏览器. 通过脚本模拟一些浏览器动作,然后测试得到的结果.这里, 我们讲解一下如何使用Python语言控制Firefox浏览...

使用pandas对矢量化数据进行替换处理的方法

使用pandas处理向量化的数据,进行数据的替换时不仅仅能够进行字符串的替换也能够处理数字。 做简单的示例如下: In [4]: data = Series(range(5))...

python处理DICOM并计算三维模型体积

在已知DICOM和三维模型对应掩膜的情况下,计算三维模型的体积。 思路: 1、计算每个体素的体积。每个体素为长方体,x,y为PixelSpacing,z为层间距 使用pydicom.re...