Python计算库numpy进行方差/标准方差/样本标准方差/协方差的计算

yipeiwu_com6年前Python基础

使用numpy可以做很多事情,在这篇文章中简单介绍一下如何使用numpy进行方差/标准方差/样本标准方差/协方差的计算。

variance: 方差

方差(Variance)是概率论中最基础的概念之一,它是由统计学天才罗纳德·费雪1918年最早所提出。用于衡量数据离散程度,因为它能体现变量与其数学期望(均值)之间的偏离程度。具有相同均值的数据,而标准差可能不同,而通过标准差的大小则能更好地反映出数据的偏离度。

计算:一组数据1,2,3,4,其方差应该是多少?

计算如下:

均值=(1+2+3+4)/4=2.5
方差=((1-2.5)^2 + (2-2.5)^2 + (3-2.5)^2 +(4-2.5)^2)/4 = (2.25+0.25+0.25+2.25)/4 = 1.25

python的numpy库中使用var函数即可求解,代码&执行如下:

liumiaocn:tmp liumiao$ cat np-5.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("variance of [1,2,3,4]:", np.var(arr))
liumiaocn:tmp liumiao$ python np-5.py 
('variance of [1,2,3,4]:', 1.25)
liumiaocn:tmp liumiao$ 

standard deviation: 标准偏差

标准偏差=方差的开放,所以:

计算: 一组数据1,2,3,4,其标准偏差应该是多少?

计算就很简单了,对其求出的方差1.25进行开方运算即可得到大约1.118

可以使用numpy库中的std函数就可以非常简单的求解,代码&执行如下:

liumiaocn:tmp liumiao$ cat np-6.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("variance of [1,2,3,4]:", np.var(arr))
print("sqrt of variance [1,2,3,4]:",np.sqrt(np.var(arr)))
print("standard deviation: np.std()", np.std(arr))
liumiaocn:tmp liumiao$ python np-6.py 
('variance of [1,2,3,4]:', 1.25)
('sqrt of variance [1,2,3,4]:', 1.118033988749895)
('standard deviation: np.std()', 1.118033988749895)
liumiaocn:tmp liumiao$ 

sample standard deviation: 样本标准偏差

标准偏差是对总体样本进行求解,如果有取样,则需要使用样本标准偏差,它也是一个求开方的运算,但是对象不是方差,方差使用是各个数据与数学均值的差的求和的均值,简单来说除的对象是N,样本偏差则是N-1。

计算: 一组数据1,2,3,4,其样本标准偏差应该是多少?
计算如下:
均值=(1+2+3+4)/4=2.5
样本标准偏差的方差=((1-2.5)^2 + (2-2.5)^2 + (3-2.5)^2 +(4-2.5)^2)/3 = (2.25+0.25+0.25+2.25)/4 = 5/3
所以对5/3开方运算所得到的就是样本标准偏差为:1.29

同样适用numpy的std函数就可以做到这点,只需要将其一个Optional的参数设定为1即可,代码&执行如下:

liumiaocn:tmp liumiao$ cat np-7.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("sample standard deviation: np.std()", np.std(arr, ddof=1))
liumiaocn:tmp liumiao$ python np-7.py 
('sample standard deviation: np.std()', 1.2909944487358056)
liumiaocn:tmp liumiao$

注意:matlab中的std实际指的是样本标准偏差,这点需要注意,如果你的代码从matlab上copy过来,请注意其实际的意义是标准偏差还是样本标准偏差

Covariance:协方差

协方差和方差较为接近,区别在于除数为N-1。

计算: 一组数据1,2,3,4,其协方差应该是多少?

计算如下:

均值=(1+2+3+4)/4=2.5
方差=((1-2.5)^2 + (2-2.5)^2 + (3-2.5)^2 +(4-2.5)^2)/(4-1) = (2.25+0.25+0.25+2.25)/3 = 1.66667

使用numpy的cov函数即可简单求出,代码和执行结果如下:

liumiaocn:tmp liumiao$ cat np-8.py 
#!/usr/local/bin/python
import numpy as np
arr = np.array([1,2,3,4])
print("Covariance: np.cov()", np.cov(arr))
liumiaocn:tmp liumiao$ python np-8.py 
('Covariance: np.cov()', array(1.66666667))
liumiaocn:tmp liumiao$

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

解决pycharm界面不能显示中文的问题

主题的修改: File -> Settings , 弹出的窗口中: Appearance & Behavior -> Appearance , 可以修改“Theme”。 换成...

python批量读取文件名并写入txt文件中

本文实例为大家分享了python批量读取文件名并写入txt中的具体代码,供大家参考,具体内容如下 先说下脚本使用的环境吧,在做项目的过程中需要动态加载图片,使用Unity的Resour...

Python中的相关分析correlation analysis的实现

Python中的相关分析correlation analysis的实现

相关分析(correlation analysis) 研究两个或两个以上随机变量之间相互依存关系的方向和密切程度的方法。 线性相关关系主要采用皮尔逊(Pearson)相关系数r来度量连续...

详细解析Python中的变量的数据类型

详细解析Python中的变量的数据类型

 变量是只不过保留的内存位置用来存储值。这意味着,当创建一个变量,那么它在内存中保留一些空间。 根据一个变量的数据类型,解释器分配内存,并决定如何可以被存储在所保留的内存中。因...

python 单线程和异步协程工作方式解析

在python3.4之后新增了asyncio模块,可以帮我们检测IO(只能是网络IO【HTTP连接就是网络IO操作】),实现应用程序级别的切换(异步IO)。注意:asyncio只能发tc...