Python最小二乘法矩阵

yipeiwu_com5年前Python基础

最小二乘法矩阵

#! /usr/bin/env python
# -*- coding: utf-8 -*-
import numpy as np
def calc_left_k_mat(k):
  """
  获得左侧k矩阵
  :param k:
  :return:
  """
  k_mat = []
  for i in range(k + 1):
    now_line = []
    for j in range(k + 1):
      now_line.append(j + i)
    k_mat.append(now_line)
  return k_mat
def calc_right_k_mat(k):
  """
  计算右侧矩阵
  :param k:
  :return:
  """
  k_mat = []
  for i in range(k + 1):
    k_mat.append([i, i + 1])
  return k_mat
def pow_k(x, k):
  """
  计算x列表中的k次方和
  :param x: 点集合的x坐标
  :param k: k值
  :return:
  """
  sum = 0
  for i in x:
    sum += i ** k
  return sum
def get_left_mat_with_x(k_mat, k):
  """
  将 左侧k矩阵运算得到左侧新的矩阵
  :param k_mat:
  :param k:
  :return:
  """
  left_mat = []
  for kl in k_mat:
    now_data = []
    for k in kl:
      now_data.append(pow_k(x, k))
    left_mat.append(now_data)
  return left_mat
def get_right_mat_with(right_k_mat):
  """
  将 右侧k矩阵运算得到右侧新的矩阵
  :param right_k_mat:
  :return:
  """
  right_mat = []
  for i in range(len(right_k_mat)):
    sum = 0
    for xL, yL in zip(x, y):
      a = (xL ** right_k_mat[i][0]) * (yL ** right_k_mat[i][1])
      sum += a
    right_mat.append(sum)
  return right_mat
def fuse_mat(left, right):
  """
  融合两个矩阵
  :param left:
  :param right:
  :return:
  """
  new_mat = []
  for i in range(len(left)):
    asd = np.append(left[i], right[i])
    new_mat.append(list(asd))
  return new_mat
if __name__ == '__main__':
  k = 3
  x = [1, 2, 3]
  y = [1, 2, 3]
  # 计算原始左侧K矩阵
  left_k_mat = calc_left_k_mat(k)
  print("原始左侧K矩阵")
  print(left_k_mat)
  # 计算原始右侧K矩阵
  right_k_mat = calc_right_k_mat(k)
  print("原始右侧k矩阵")
  print(right_k_mat)
  # 计算左侧 k 矩阵
  new_left_mat = get_left_mat_with_x(k_mat=left_k_mat, k=k)
  # 计算右侧 k 矩阵
  new_right_mat = get_right_mat_with(right_k_mat=right_k_mat)
  print("计算后左侧K矩阵")
  print(new_left_mat)
  print("计算后右侧侧K矩阵")
  print(new_right_mat)
  print("-----" * 10)
  # 融合两个矩阵 左侧 矩阵每一行增加 右侧矩阵的对应行
  new_all = fuse_mat(new_left_mat, new_right_mat)
  print("完整矩阵")
  print(new_all)

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

Python处理session的方法整理

Python处理session的方法整理

前言: 不管是在做接口自动化还是在做UI自动化,测试人员遇到的第一个问题都是卡在登录上。 那是因为在执行登录的时候,服务端会有一种叫做session的会话机制。 一个很简单的例子:...

python获得两个数组交集、并集、差集的方法

本文实例讲述了python获得两个数组交集、并集、差集的房部分。分享给大家供大家参考。具体如下: 1. 获取两个list 的交集 #方法一: a=[2,3,4,5] b=[2,5,8...

python实现数据图表

python实现数据图表

平时压力测试,生成一些数据后分析,直接看 log 不是很直观,前段时间看到公司同事分享了一个绘制图表python 模块 : plotly, 觉得很实用,利用周末时间熟悉下。 plotl...

JPype实现在python中调用JAVA的实例

一、JPype简述 1.JPype是什么? JPype是一个能够让 python 代码方便地调用 Java 代码的工具,从而克服了 python 在某些领域(如服务器端编程)中的不足。...

布同自制Python函数帮助查询小工具

比如在学习list、tuple、dict、str、os、sys等模组的时候,利用Python的自带文档可以很快速的全面的学到那些处理的函数。所以这个自带文档功能能够给出学者带来很大的方便...