Python数据预处理之数据规范化(归一化)示例

yipeiwu_com6年前Python基础

本文实例讲述了Python数据预处理之数据规范化。分享给大家供大家参考,具体如下:

数据规范化

为了消除指标之间的量纲和取值范围差异的影响,需要进行标准化(归一化)处理,将数据按照比例进行缩放,使之落入一个特定的区域,便于进行综合分析。

数据规范化方法主要有:

- 最小-最大规范化
- 零-均值规范化

数据示例

代码实现

#-*- coding: utf-8 -*-
#数据规范化
import pandas as pd
import numpy as np
datafile = 'normalization_data.xls' #参数初始化
data = pd.read_excel(datafile, header = None) #读取数据
(data - data.min())/(data.max() - data.min()) #最小-最大规范化
(data - data.mean())/data.std() #零-均值规范化

从命令行可以看到下面的输出:

>>> (data-data.min())/(data.max()-data.min(
          0         1         2         3
0  0.074380  0.937291  0.923520  1.000000
1  0.619835  0.000000  0.000000  0.850941
2  0.214876  0.119565  0.813322  0.000000
3  0.000000  1.000000  1.000000  0.563676
4  1.000000  0.942308  0.996711  0.804149
5  0.264463  0.838629  0.814967  0.909310
6  0.636364  0.846990  0.786184  0.929571

>>> (data-data.mean())/data.std()
          0         1         2         3
0 -0.905383  0.635863  0.464531  0.798149
1  0.604678 -1.587675 -2.193167  0.369390
2 -0.516428 -1.304030  0.147406 -2.078279
3 -1.111301  0.784628  0.684625 -0.456906
4  1.657146  0.647765  0.675159  0.234796
5 -0.379150  0.401807  0.152139  0.537286
6  0.650438  0.421642  0.069308  0.595564

上述代码改为使用print语句打印,如下:

#-*- coding: utf-8 -*-
#数据规范化
import pandas as pd
import numpy as np
datafile = 'normalization_data.xls' #参数初始化
data = pd.read_excel(datafile, header = None) #读取数据
print((data - data.min())/(data.max() - data.min())) #最小-最大规范化
print((data - data.mean())/data.std()) #零-均值规范化

可输出如下打印结果:

          0         1         2         3
0  0.074380  0.937291  0.923520  1.000000
1  0.619835  0.000000  0.000000  0.850941
2  0.214876  0.119565  0.813322  0.000000
3  0.000000  1.000000  1.000000  0.563676
4  1.000000  0.942308  0.996711  0.804149
5  0.264463  0.838629  0.814967  0.909310
6  0.636364  0.846990  0.786184  0.929571
          0         1         2         3
0 -0.905383  0.635863  0.464531  0.798149
1  0.604678 -1.587675 -2.193167  0.369390
2 -0.516428 -1.304030  0.147406 -2.078279
3 -1.111301  0.784628  0.684625 -0.456906
4  1.657146  0.647765  0.675159  0.234796
5 -0.379150  0.401807  0.152139  0.537286
6  0.650438  0.421642  0.069308  0.595564

附:代码中使用到的normalization_data.xls点击此处本站下载

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》、《Python入门与进阶经典教程》及《Python文件与目录操作技巧汇总

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python Lambda函数使用总结详解

这篇文章主要介绍了Python Lambda函数使用总结详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 lambda表达式是一种匿...

简单的Python调度器Schedule详解

最近在做项目的时候经常会用到定时任务,由于我的项目是使用Java来开发,用的是SpringBoot框架,因此要实现这个定时任务其实并不难。 后来我在想如果我要在Python中实现,我要怎...

Python实现图片拼接的代码

具体代码如下所示: import os from PIL import Image UNIT_SIZE = 220 # the size of image save_path = '...

Python装饰器的函数式编程详解

Python的装饰器的英文名叫Decorator,当你看到这个英文名的时候,你可能会把其跟Design Pattern里的Decorator搞混了,其实这是完全不同的两个东西。虽然好像,...

Python序列类型的打包和解包实例

打包 如给出一系列由逗号分隔的表达式,他们将被视为一个单独元组,即使没有提供封闭的圆括号 如: numbers = 1, 2, 3, 4 使numbers被赋值元组(1, 2, 3...