python可视化实现代码

yipeiwu_com6年前Python基础

python可视化

#导入两个库
import numpy as np
import matplotlib.pyplot as plt
#第一个参数就是x轴的初始值 
#第二个参数是x轴的终止值
#第三个返回num均匀分布的样本,也就是0-12的区间取多少个点,如果为曲线的最好数值大一点
x = np.linspace(0, 12, 50)
y = np.sin(x) #函数
z = np.cos(x) # 函数
plt.figure(figsize=(8, 4))#解释在下面
plt.plot(x, y, label="$sin(x)$", color="red", linewidth=2) #描绘函数图像以及标注
plt.plot(x, z, "b--", label="$cos(X^2)$")# b--为虚线的意思
plt.xlabel("Time(s)") #x轴的名字
plt.ylabel("Volt1")
plt.title("PyPlot First Example")
#第一个参数是表示y轴的开始值
#第二个参数是表示y轴的结束值
plt.ylim(-1.2, 1, 2) 
plt.legend()
plt.show()

(1)figure语法说明

figure(num=None, figsize=None, dpi=None, facecolor=None, edgecolor=None, frameon=True)
  • num:图像编号或名称,数字为编号 ,字符串为名称
  • figsize:指定figure的宽和高,单位为英寸;
  • dpi参数指定绘图对象的分辨率,即每英寸多少个像素,缺省值为80 1英寸等于2.5cm,A4纸是 21*30cm的纸张
  • facecolor:背景颜色
  • edgecolor:边框颜色
  • frameon:是否显示边框

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

python事件驱动event实现详解

python事件驱动event实现详解

所有的计算机程序都可以大致分为两类:脚本型(单次运行)和连续运行型(直到用户主动退出)。 脚本型:脚本型的程序包括最早的批处理文件以及使用Python做交易策略回测等等,这类程序的特点是...

使用Python压缩和解压缩zip文件的教程

python 的 zipfile 提供了非常便捷的方法来压缩和解压 zip 文件。 例如,在py脚本所在目录中,有如下文件: 复制代码 代码如下:readability/readabil...

django文档学习之applications使用详解

django文档学习之applications使用详解

本文研究的主要是Django1.10文档的深入学习,Applications基础部分的相关内容,具体介绍如下。 Applications应用 Django包含一个安装的应用程序的注册表,...

Python3.6日志Logging模块简单用法示例

Python3.6日志Logging模块简单用法示例

本文实例讲述了Python3.6日志Logging模块简单用法。分享给大家供大家参考,具体如下: Logging是一个很方便的模块,用来打印日志 我直接列出一个最灵活的方法 # -*...

提升Python程序性能的7个习惯

掌握一些技巧,可尽量提高Python程序性能,也可以避免不必要的资源浪费。 1、使用局部变量 尽量使用局部变量代替全局变量:便于维护,提高性能并节省内存。 使用局部变量替换模块名字空间中...