用Python PIL实现几个简单的图片特效

yipeiwu_com6年前Python基础

导入 numpy 、PIL

numpy用来做矩阵运算,PIL用来读取图片。

import numpy as np
from PIL import Image

读取图片,然后转换成RGB模式存在矩阵里

im = Image.open(imagename).convert('RGB')
arr = np.array(im)

查看arr的shape,可以看到arr是个3维的数组,数组大小等于 长*宽*3

In [566]: arr.shape
Out[566]: (313, 450, 3)

每个像素有3个数字表示,分别对应(R,G,B)

IN [567]: arr[0][0]
Out[567]: array([6, 4, 9], dtype=uint8)

原始图片

彩色转黑白

把像素的R,G,B三个通道数值都置为r*0.299+g*0.587+b*0.114

def blackWithe(imagename):
  # r,g,b = r*0.299+g*0.587+b*0.114
  im = np.asarray(Image.open(imagename).convert('RGB'))
  trans = np.array([[0.299,0.587,0.114],[0.299,0.587,0.114],[0.299,0.587,0.114]]).transpose()
  im = np.dot(im,trans)
  return Image.fromarray(np.array(im).astype('uint8'))

流年

把R通道的数值开平方,然后乘以一个参数

def fleeting(imagename,params=12):
  im = np.asarray(Image.open(imagename).convert('RGB'))
  im1 = np.sqrt(im*[1.0,0.0,0.0])*params
  im2 = im*[0.0,1.0,1.0]
  im = im1+im2
  return Image.fromarray(np.array(im).astype('uint8')) 

旧电影

把像素的R,G,B三个通道数值,3个通道的分别乘以3个参数后求和,最后把超过255的值置为255

def oldFilm(imagename):
  im = np.asarray(Image.open(imagename).convert('RGB'))
  # r=r*0.393+g*0.769+b*0.189 g=r*0.349+g*0.686+b*0.168 b=r*0.272+g*0.534b*0.131
  trans = np.array([[0.393,0.769,0.189],[0.349,0.686,0.168],[0.272,0.534,0.131]]).transpose()
  # clip 超过255的颜色置为255
  im = np.dot(im,trans).clip(max=255)        
  return Image.fromarray(np.array(im).astype('uint8')) 

反色

这个最简单了,用255减去每个通道的原来的数值

def reverse(imagename):
  im = 255 - np.asarray(Image.open(imagename).convert('RGB'))
  return Image.fromarray(np.array(im).astype('uint8')) 

PS:示例

from PIL import Image, ImageFilter

# 打开一个jpg图像文件,注意是当前路径:
im = Image.open('Penguins.jpg')



# 模糊
im2 = im.filter(ImageFilter.BLUR)
# 模糊可设置模糊的程度
im22 = im.filter(ImageFilter.BoxBlur(200))
# 轮廓滤波
im3 = im.filter(ImageFilter.CONTOUR)
# 边缘增强滤波(锐化)
im4 = im.filter(ImageFilter.EDGE_ENHANCE)
# 浮雕滤波
im5 = im.filter(ImageFilter.EMBOSS)
# 寻找边缘信息的滤波
im6 = im.filter(ImageFilter.FIND_EDGES)

im2.save('BLUR.jpg', 'jpeg')
im3.save('CONTOUR.jpg', 'jpeg')
im4.save('EDGE_ENHANCE.jpg', 'jpeg')
im5.save('EMBOSS.jpg', 'jpeg')
im6.save('FIND_EDGES.jpg', 'jpeg')
im22.save('BoxBlur(200).jpg', 'jpeg')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python操作xml文件详细介绍

关于python读取xml文章很多,但大多文章都是贴一个xml文件,然后再贴个处理文件的代码。这样并不利于初学者的学习,希望这篇文章可以更通俗易懂的教如何使用python 来读取xml...

对Python中TKinter模块中的Label组件实例详解

对Python中TKinter模块中的Label组件实例详解

Python2.7.4 OS—W7x86 1. 简介 Label用于在指定的窗口中显示文本和图像。最终呈现出的Label是由背景和前景叠加构成的内容。 Label组件定义函数:Label...

TensorFlow实现Logistic回归

本文实例为大家分享了TensorFlow实现Logistic回归的具体代码,供大家参考,具体内容如下 1.导入模块 import numpy as np import pandas...

Django与JS交互的示例代码

Django与JS交互的示例代码

应用一:有时候我们想把一个 list 或者 dict 传递给 javascript,处理后显示到网页上,比如要用 js 进行可视化的数据。 请注意:如果是不处理,直接显示在网页上,用Dj...

Python文件读取的3种方法及路径转义

1.文件的读取和显示 方法1: 复制代码 代码如下:  f=open(r'G:\2.txt')  print f.read()  f.close() 方法...