用Python PIL实现几个简单的图片特效

yipeiwu_com5年前Python基础

导入 numpy 、PIL

numpy用来做矩阵运算,PIL用来读取图片。

import numpy as np
from PIL import Image

读取图片,然后转换成RGB模式存在矩阵里

im = Image.open(imagename).convert('RGB')
arr = np.array(im)

查看arr的shape,可以看到arr是个3维的数组,数组大小等于 长*宽*3

In [566]: arr.shape
Out[566]: (313, 450, 3)

每个像素有3个数字表示,分别对应(R,G,B)

IN [567]: arr[0][0]
Out[567]: array([6, 4, 9], dtype=uint8)

原始图片

彩色转黑白

把像素的R,G,B三个通道数值都置为r*0.299+g*0.587+b*0.114

def blackWithe(imagename):
  # r,g,b = r*0.299+g*0.587+b*0.114
  im = np.asarray(Image.open(imagename).convert('RGB'))
  trans = np.array([[0.299,0.587,0.114],[0.299,0.587,0.114],[0.299,0.587,0.114]]).transpose()
  im = np.dot(im,trans)
  return Image.fromarray(np.array(im).astype('uint8'))

流年

把R通道的数值开平方,然后乘以一个参数

def fleeting(imagename,params=12):
  im = np.asarray(Image.open(imagename).convert('RGB'))
  im1 = np.sqrt(im*[1.0,0.0,0.0])*params
  im2 = im*[0.0,1.0,1.0]
  im = im1+im2
  return Image.fromarray(np.array(im).astype('uint8')) 

旧电影

把像素的R,G,B三个通道数值,3个通道的分别乘以3个参数后求和,最后把超过255的值置为255

def oldFilm(imagename):
  im = np.asarray(Image.open(imagename).convert('RGB'))
  # r=r*0.393+g*0.769+b*0.189 g=r*0.349+g*0.686+b*0.168 b=r*0.272+g*0.534b*0.131
  trans = np.array([[0.393,0.769,0.189],[0.349,0.686,0.168],[0.272,0.534,0.131]]).transpose()
  # clip 超过255的颜色置为255
  im = np.dot(im,trans).clip(max=255)        
  return Image.fromarray(np.array(im).astype('uint8')) 

反色

这个最简单了,用255减去每个通道的原来的数值

def reverse(imagename):
  im = 255 - np.asarray(Image.open(imagename).convert('RGB'))
  return Image.fromarray(np.array(im).astype('uint8')) 

PS:示例

from PIL import Image, ImageFilter

# 打开一个jpg图像文件,注意是当前路径:
im = Image.open('Penguins.jpg')



# 模糊
im2 = im.filter(ImageFilter.BLUR)
# 模糊可设置模糊的程度
im22 = im.filter(ImageFilter.BoxBlur(200))
# 轮廓滤波
im3 = im.filter(ImageFilter.CONTOUR)
# 边缘增强滤波(锐化)
im4 = im.filter(ImageFilter.EDGE_ENHANCE)
# 浮雕滤波
im5 = im.filter(ImageFilter.EMBOSS)
# 寻找边缘信息的滤波
im6 = im.filter(ImageFilter.FIND_EDGES)

im2.save('BLUR.jpg', 'jpeg')
im3.save('CONTOUR.jpg', 'jpeg')
im4.save('EDGE_ENHANCE.jpg', 'jpeg')
im5.save('EMBOSS.jpg', 'jpeg')
im6.save('FIND_EDGES.jpg', 'jpeg')
im22.save('BoxBlur(200).jpg', 'jpeg')

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

如何基于python操作excel并获取内容

这篇文章主要介绍了如何基于python操作excel并获取内容,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 背景:从excel表中获...

Tensorflow卷积神经网络实例

Tensorflow卷积神经网络实例

CNN最大的特点在于卷积的权值共享结构,可以大幅减少神经网络的参数量,防止过拟合的同时又降低了神经网络模型的复杂度。在CNN中,第一个卷积层会直接接受图像像素级的输入,每一个卷积操作只处...

Pycharm 操作Django Model的简单运用方法

Pycharm 操作Django Model的简单运用方法

Django中的Models 是什么? 通常一个Model对应数据库的一张数据表, Django中Models以类似的形式表现, 它包含了一些基本字段以及数据的一些行为 在Dja...

新手入门Python编程的8个实用建议

新手入门Python编程的8个实用建议

前言 我们在用Python进行机器学习建模项目的时候,每个人都会有自己的一套项目文件管理的习惯,我自己也有一套方法,是自己曾经踩过的坑踩过的雷总结出来的,现在在这里分享一下给大家,因为很...

Python3常见函数range()用法详解

0X01函数说明: python range() 函数可创建一个整数列表,一般用在 for 循环中。 0X02函数语法: range(start,stop[,step]) star...