python实现蒙特卡罗方法教程

yipeiwu_com6年前Python基础

蒙特卡罗方法是一种统计模拟方法,由冯·诺依曼和乌拉姆提出,在大量的随机数下,根据概率估计结果,随机数据越多,获得的结果越精确。下面我们将用python实现蒙特卡罗方法。

1.首先我们做一个简单的圆周率的近似计算,在这个过程中我们要用到随机数,因此需要先使用import numpy as np导入numpy库。

2.代码实现:

import numpy as np
 
total = 8000000
count = 0
 
for i in range(total):
 x = np.random.rand()
 y = np.random.rand()
 dis = (x**2+y**2)**0.5
 if dis <= 1:
  count = count+1
PI = 4*count/total
print(PI)

3.在上面的程序中我们用8000000个随机数进行投放,这样得到的结果会更精确一些,运行程序需要一定的时间,最终得到的结果如下

4.下面我们进行一项简单的应用,下图为我在画图工具中随便画的一个图,我们可以用蒙特卡罗方法来估算图中黑色部分的面积。

5.上面的图形是不规则的,我们只需知道在投放大量随机数的情况下,随机数在黑色部分出现的概率,再用总面积相乘即可估算黑色部分的面积。我们知道,黑色的rgb编码为(0,0,0),所以需要统计rgb编码为(0,0,0)时随机数的投放概率即可。

6.代码实现:

from PIL import Image
import numpy as np
 
im = Image.open("C:/Users/21974/Desktop/handwrite2.PNG")
total = 9000000
count = 0
defin = 0
width = im.size[0]
height = im.size[1]
 
for i in range(total): #用蒙特卡罗方法获得估计值
 x = np.random.randint(0, width-1)
 y = np.random.randint(0, height-1)
 k = im.getpixel((x, y))
 if k[0]+k[1]+k[2] == 0:
  count += 1
print(int(width*height*count/total))
 
for i in range(width): #用遍历获得准确值
 for j in range(height):
  k = im.getpixel((i, j))
  if k[0] + k[1] + k[2] == 0:
   defin += 1
print(defin)

上面的代码可分为两部分,第一个for后面是用蒙特卡罗方法获得的面积的估计值,第二个for后面是用遍历所有像素点的方法获得的面积的精确值,获得两个输出后进行对比。

我们在上面的程序中采用了9000000个随机数,可以看出两个输出结果相差并不大。

相关文章

Pytorch加载部分预训练模型的参数实例

前言 自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了。对于深度学习...

PyQt5每天必学之关闭窗口

PyQt5每天必学之关闭窗口

最简单的关闭一个窗口的方法是点击标题栏上的 x 标志。但是,在下面的例子中,我们将展示如何通过编程来控制关闭窗口。我们将使用PyQt5的信号/槽。 以下是我们在例子中使用到的 QPush...

Python实时获取cmd的输出

最近发现一个问题,一个小伙儿写的console程序不够健壮,监听SOCKET的时候容易崩,造成程序的整体奔溃,无奈他没有找到问题的解决办法,一直解决不了,可是这又是一个监控程序,还是比较...

Django中Model的使用方法教程

前言 本文主要给大家介绍了关于Django中Model使用的相关内容,分享出来供大家参考学习,下面话不多说了,来一起看看详细的介绍吧。 创建模型 使用Django的模型主要注意两个方面...

浅谈python 导入模块和解决文件句柄找不到问题

如果你退出 Python 解释器并重新进入,你做的任何定义(变量和方法)都会丢失。因此,如果你想要编写一些更大的程序,为准备解释器输入使用一个文本编辑器会更好,并以那个文件替代作为输入执...