python实现蒙特卡罗方法教程

yipeiwu_com6年前Python基础

蒙特卡罗方法是一种统计模拟方法,由冯·诺依曼和乌拉姆提出,在大量的随机数下,根据概率估计结果,随机数据越多,获得的结果越精确。下面我们将用python实现蒙特卡罗方法。

1.首先我们做一个简单的圆周率的近似计算,在这个过程中我们要用到随机数,因此需要先使用import numpy as np导入numpy库。

2.代码实现:

import numpy as np
 
total = 8000000
count = 0
 
for i in range(total):
 x = np.random.rand()
 y = np.random.rand()
 dis = (x**2+y**2)**0.5
 if dis <= 1:
  count = count+1
PI = 4*count/total
print(PI)

3.在上面的程序中我们用8000000个随机数进行投放,这样得到的结果会更精确一些,运行程序需要一定的时间,最终得到的结果如下

4.下面我们进行一项简单的应用,下图为我在画图工具中随便画的一个图,我们可以用蒙特卡罗方法来估算图中黑色部分的面积。

5.上面的图形是不规则的,我们只需知道在投放大量随机数的情况下,随机数在黑色部分出现的概率,再用总面积相乘即可估算黑色部分的面积。我们知道,黑色的rgb编码为(0,0,0),所以需要统计rgb编码为(0,0,0)时随机数的投放概率即可。

6.代码实现:

from PIL import Image
import numpy as np
 
im = Image.open("C:/Users/21974/Desktop/handwrite2.PNG")
total = 9000000
count = 0
defin = 0
width = im.size[0]
height = im.size[1]
 
for i in range(total): #用蒙特卡罗方法获得估计值
 x = np.random.randint(0, width-1)
 y = np.random.randint(0, height-1)
 k = im.getpixel((x, y))
 if k[0]+k[1]+k[2] == 0:
  count += 1
print(int(width*height*count/total))
 
for i in range(width): #用遍历获得准确值
 for j in range(height):
  k = im.getpixel((i, j))
  if k[0] + k[1] + k[2] == 0:
   defin += 1
print(defin)

上面的代码可分为两部分,第一个for后面是用蒙特卡罗方法获得的面积的估计值,第二个for后面是用遍历所有像素点的方法获得的面积的精确值,获得两个输出后进行对比。

我们在上面的程序中采用了9000000个随机数,可以看出两个输出结果相差并不大。

相关文章

Python的Django框架中的数据过滤功能

我们很少会一次性从数据库中取出所有的数据;通常都只针对一部分数据进行操作。 在Django API中,我们可以使用`` filter()`` 方法对数据进行过滤: >>&...

Python的Flask框架中实现登录用户的个人资料和头像的教程

Python的Flask框架中实现登录用户的个人资料和头像的教程

用户资料页面 在用户资料页面,基本上没有什么特别要强调和介绍的新概念。只需要创建一个含有HTML的新视图函数模板页面即可。 下面是视图函数(项目目录/views.py):  ...

不可错过的十本Python好书

不可错过的十本Python好书

以往的文章中小编已经给大家陆续推荐了很多的Python书籍,可以说品种齐全、本本经典了,不知道你是不是已经眼花缭乱,不知道该选择哪本好了呢?今天我来为大家分享十本不可错过的Python好...

django使用图片延时加载引起后台404错误

django使用图片延时加载引起后台404错误

环境 django 1.10.6 缘起 今天接到一个任务——解决终端满屏日志中的无用错误。 django 会尽可能给你准确报出错误位置,但是一些复杂,深层次的错误它自带的错误日志有些不足...

使用python解析xml成对应的html示例分享

SAX将dd.xml解析成html。当然啦,如果得到了xml对应的xsl文件可以直接用libxml2将其转换成html。 复制代码 代码如下:#!/usr/bin/env python...