Pytorch加载部分预训练模型的参数实例

yipeiwu_com5年前Python基础

前言

自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了。对于深度学习的初学者,Pytorch值得推荐。今天主要主要谈谈Pytorch是如何加载预训练模型的参数以及代码的实现过程。

直接加载预选脸模型

如果我们使用的模型和预训练模型完全一样,那么我们就可以直接加载别人的模型,还有一种情况,我们在训练自己模型的过程中,突然中断了,但只要我们保存了之前的模型的参数也可以使用下面的代码直接加载我们保存的模型继续训练,不用从头开始。

model=DPN(*args, **kwargs)
model.load_state_dict(torch.load("DPN.pth"))

这样的加载方式是基于Pytorch使用的模型存储方法:

torch.save(DPN.state_dict(), "DPN.pth")

加载部分预训练模型参数

其实大多数时候我们根据自己的任物所提出的模型是在一些公开模型的基础上改变而来,其中公开模型的参数我们没有必要在从头开始训练,只要加载其训练好的模型参数即可,这样有助于提高训练的准确率和我们模型的泛化能力。

 model = DPN(num_init_features=64, k_R=96, G=32, k_sec=(3,4,20,3), inc_sec=(16,32,24,128), num_classes=1,decoder=args.decoder)
 http = {'url': 'http://data.lip6.fr/cadene/pretrainedmodels/dpn92_extra-b040e4a9b.pth'}
 pretrained_dict=model_zoo.load_url(http['url'])
 model_dict = model.state_dict()
 pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}#filter out unnecessary keys 
 model_dict.update(pretrained_dict)
 model.load_state_dict(model_dict)
 model = torch.nn.DataParallel(model).cuda()

因为需要删除预训练模型中不匹配的的键,也就是层的名字。

以上这篇Pytorch加载部分预训练模型的参数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现决策树分类(2)

在上一篇文章中,我们已经构建了决策树,接下来可以使用它用于实际的数据分类。在执行数据分类时,需要决策时以及标签向量。程序比较测试数据和决策树上的数值,递归执行直到进入叶子节点。 这篇文章...

matlab中实现矩阵删除一行或一列的方法

实例如下所示: >> A=[1,2,3;4,5,6;7,8,9] A = 1 2 3 4 5 6 7 8 9 删除行: >> A...

Win10环境python3.7安装dlib模块趟过的坑

Win10环境python3.7安装dlib模块趟过的坑

在头条看了一篇文章,说五行代码实现人脸识别,一时感兴趣了,来搞搞 先是按照文章说的 操作了几步,到后面虽然,import dlib 不报错,但是 代码里面运行的时候 detector...

python3 selenium自动化 下拉框定位的例子

python3 selenium自动化 下拉框定位的例子

我们在做web UI自动化时,经常会碰到下拉框,如下图: 所上图,下拉框的源代码如下: <html1> <head></head> <...

python程序运行进程、使用时间、剩余时间显示功能的实现代码

有很多程序运行时间比较长,如果不将运行过程输出将很难判断程序运行的时间。下边这段程序将按照上图所示的格式输出程序运行进程、已用时间、剩余时间。 def time_change(tim...