Pytorch加载部分预训练模型的参数实例

yipeiwu_com6年前Python基础

前言

自从从深度学习框架caffe转到Pytorch之后,感觉Pytorch的优点妙不可言,各种设计简洁,方便研究网络结构修改,容易上手,比TensorFlow的臃肿好多了。对于深度学习的初学者,Pytorch值得推荐。今天主要主要谈谈Pytorch是如何加载预训练模型的参数以及代码的实现过程。

直接加载预选脸模型

如果我们使用的模型和预训练模型完全一样,那么我们就可以直接加载别人的模型,还有一种情况,我们在训练自己模型的过程中,突然中断了,但只要我们保存了之前的模型的参数也可以使用下面的代码直接加载我们保存的模型继续训练,不用从头开始。

model=DPN(*args, **kwargs)
model.load_state_dict(torch.load("DPN.pth"))

这样的加载方式是基于Pytorch使用的模型存储方法:

torch.save(DPN.state_dict(), "DPN.pth")

加载部分预训练模型参数

其实大多数时候我们根据自己的任物所提出的模型是在一些公开模型的基础上改变而来,其中公开模型的参数我们没有必要在从头开始训练,只要加载其训练好的模型参数即可,这样有助于提高训练的准确率和我们模型的泛化能力。

 model = DPN(num_init_features=64, k_R=96, G=32, k_sec=(3,4,20,3), inc_sec=(16,32,24,128), num_classes=1,decoder=args.decoder)
 http = {'url': 'http://data.lip6.fr/cadene/pretrainedmodels/dpn92_extra-b040e4a9b.pth'}
 pretrained_dict=model_zoo.load_url(http['url'])
 model_dict = model.state_dict()
 pretrained_dict = {k: v for k, v in pretrained_dict.items() if k in model_dict}#filter out unnecessary keys 
 model_dict.update(pretrained_dict)
 model.load_state_dict(model_dict)
 model = torch.nn.DataParallel(model).cuda()

因为需要删除预训练模型中不匹配的的键,也就是层的名字。

以上这篇Pytorch加载部分预训练模型的参数实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python利用ffmpeg进行录制屏幕的方法

前几天下载了几个视频,但是有两集是一个视频的,偶尔找到了ffmpeg处理视频的方法,它的功能非常强大。因此,分享一下,一起学习。 import subprocess,sys,os i...

在Windows中设置Python环境变量的实例讲解

在 Windows 设置环境变量 在环境变量中添加Python目录: 在命令提示框中(cmd) : 输入 path=%path%;C:\Python 按下"Enter"。 注意:...

python实现RabbitMQ的消息队列的示例代码

最近在研究redis做消息队列时,顺便看了一下RabbitMQ做消息队列的实现。以下是总结的RabbitMQ中三种exchange模式的实现,分别是fanout, direct和topi...

Python自定义scrapy中间模块避免重复采集的方法

本文实例讲述了Python自定义scrapy中间模块避免重复采集的方法。分享给大家供大家参考。具体如下: from scrapy import log from scrapy.htt...

Python中的asyncio代码详解

asyncio介绍 熟悉c#的同学可能知道,在c#中可以很方便的使用 async 和 await 来实现异步编程,那么在python中应该怎么做呢,其实python也...