Python中整数的缓存机制讲解

yipeiwu_com5年前Python基础

在python中,如下代码结果一定不会让你吃惊:

Python 3.3.2 (v3.3.2:d047928ae3f6, May 16 2013, 00:06:53) [MSC v.1600 64 bit (AMD64)] on win32
Type "copyright", "credits" or "license()" for more information.
>>> a=345
>>> b=a
>>> a is b
True
>>>

没错,在python一切皆是对象,而对象是通过引用传递的。在赋值时,不管这个对象是新创建的,还是一个已经存在的,都是将该对象的引用赋值给变量。故这里a实际上和b是同一个对象,a is b为true!

当然稍为了解python的人我相信都会知道以上相关知识的。但是如下的代码结果,却让人不大好理解了:

>>> c=256
>>> d=256
>>> c is d
True
>>> e=257
>>> f=257
>>> e is f
False
>>>

我们将c赋值为了整型值256,d也为256,e为257,f为257。但是当把c与d,e与f进行is操作时,却发现两者的结果不同。

原因在哪?

——这个是由python中的整型对象的缓冲池机制,所决定的。

在python中几乎所有的内建对象,都会有自己所特有的对象池机制。

1.小整数对象——小整型对象池

在实际编程中,数值比较小的整数,比如1,2,29等,可能会非常频繁的出现。而在python中,所有的对象都存在与系统堆上。想想?如果某个小整数出现的次数非常多,那么python将会出现大量的malloc/free操作,这样大大降低了运行效率,而且会造成大量的内存碎片,严重影响Python的整体性能。

在python2.5乃至3.3中,将小整数位于[-5,257)之间的数,缓存在小整型对象池中。

这也就是为了c is d而e is not f的原因了。

2.大整数对象——通用整数对象池

由以上知,python把小整型数完全的缓存在了小对象缓存池中了。而那些大整数对象就没有那么好的待遇了!python运行环境提供了一块内存空间供大整数轮流使用。通常称为通用整数对象池。这也就是说大整数其实也是有缓存的。该对象池使用链表组织,虽然e和f有着相同的值,但是在链表中确是不同的节点。也就是说e和f根本不是一个对象。至于既然有缓存,为什么e和f还要组织为两个节点,就不大明白了。

讲讲我的看法吧:我觉得从语义上来讲e=257和f=257本身就是应当为两个不同的对象(这点和对象赋值不同)。由于整数缓存池的存在,让大家觉得任何整数在缓冲池中都只能存在一个,不能重复。但将e和f在整数缓冲池中组织为一个节点或两个节点没有什么本质区别吧(除了浪费了一点内存)。

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

python scipy求解非线性方程的方法(fsolve/root)

python scipy求解非线性方程的方法(fsolve/root)

使用scipy.optimize模块的root和fsolve函数进行数值求解线性及非线性方程,下面直接贴上代码,代码很简单 from scipy.integrate import o...

python中的字典详细介绍

一、什么是字典? 字典是Python语言中唯一的映射类型。 映射类型对象里哈希值(键,key)和指向的对象(值,value)是一对多的的关系,通常被认为是可变的哈希表。 字典对象是可变的...

python多进程使用及线程池的使用方法代码详解

多进程:主要运行multiprocessing模块 import os,time import sys from multiprocessing import Process cla...

Python基础之函数用法实例详解

本文以实例形式较为详细的讲述了Python函数的用法,对于初学Python的朋友有不错的借鉴价值。分享给大家供大家参考之用。具体分析如下: 通常来说,Python的函数是由一个新的语句编...

python使用配置文件过程详解

这篇文章主要介绍了python使用配置文件过程详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 通过配置文件将变量暴露给用户修改 标...