计算pytorch标准化(Normalize)所需要数据集的均值和方差实例

yipeiwu_com6年前Python基础

pytorch做标准化利用transforms.Normalize(mean_vals, std_vals),其中常用数据集的均值方差有:

if 'coco' in args.dataset:
  mean_vals = [0.471, 0.448, 0.408]
  std_vals = [0.234, 0.239, 0.242]
elif 'imagenet' in args.dataset:
  mean_vals = [0.485, 0.456, 0.406]
  std_vals = [0.229, 0.224, 0.225]

计算自己数据集图像像素的均值方差:

import numpy as np
import cv2
import random
 
# calculate means and std
train_txt_path = './train_val_list.txt'
 
CNum = 10000   # 挑选多少图片进行计算
 
img_h, img_w = 32, 32
imgs = np.zeros([img_w, img_h, 3, 1])
means, stdevs = [], []
 
with open(train_txt_path, 'r') as f:
  lines = f.readlines()
  random.shuffle(lines)  # shuffle , 随机挑选图片
 
  for i in tqdm_notebook(range(CNum)):
    img_path = os.path.join('./train', lines[i].rstrip().split()[0])
 
    img = cv2.imread(img_path)
    img = cv2.resize(img, (img_h, img_w))
    img = img[:, :, :, np.newaxis]
    
    imgs = np.concatenate((imgs, img), axis=3)
#     print(i)
 
imgs = imgs.astype(np.float32)/255.
 
 
for i in tqdm_notebook(range(3)):
  pixels = imgs[:,:,i,:].ravel() # 拉成一行
  means.append(np.mean(pixels))
  stdevs.append(np.std(pixels))
 
# cv2 读取的图像格式为BGR,PIL/Skimage读取到的都是RGB不用转
means.reverse() # BGR --> RGB
stdevs.reverse()
 
print("normMean = {}".format(means))
print("normStd = {}".format(stdevs))
print('transforms.Normalize(normMean = {}, normStd = {})'.format(means, stdevs))

以上这篇计算pytorch标准化(Normalize)所需要数据集的均值和方差实例就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python json模块dumps、loads操作示例

本文实例讲述了Python json模块dumps、loads操作。分享给大家供大家参考,具体如下: python中json数据的使用。 dumps和loads也是需要成对使用的,就像c...

解决pandas .to_excel不覆盖已有sheet的问题

直接to_excel会被覆盖,借助ExcelWriter可以实现写多个sheet。 from openpyxl import load_workbook excelWriter =...

Django RBAC权限管理设计过程详解

Django RBAC权限管理设计过程详解

一.权限简介 1. 问:为什么程序需要权限控制? 答:生活中的权限限制,① 看灾难片电影《2012》中富人和权贵有权登上诺亚方舟,穷苦老百姓只有等着灾难的来临;② 屌丝们,有没有想过为...

Python创建xml的方法

本文实例讲述了Python创建xml的方法。分享给大家供大家参考。具体实现方法如下: from xml.dom.minidom import Document class write...

Python实现将不规范的英文名字首字母大写

例如 输入:['adam', 'LISA', 'barT'],输出:['Adam', 'Lisa', 'Bart']。 方法一 def wgw(x): return [x[0]...