python使用pipeline批量读写redis的方法

yipeiwu_com5年前Python基础

用了很久的redis了。随着业务的要求越来越高。对redis的读写速度要求也越来越高。正好最近有个需求(需要在秒级取值1000+的数据),如果对于传统的单词取值,循环取值,消耗实在是大,有小伙伴可能考虑到多线程,但这并不是最好的解决方案,这里考虑到了redis特有的功能pipeline管道功能。

下面就更大家演示一下pipeline在python环境下的使用情况。

1、插入数据

>>> import redis

>>> conn = redis.Redis(host='192.168.8.176',port=6379)

>>> pipe = conn.pipeline()

>>> pipe.hset("hash_key","leizhu900516",8)
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>

>>> pipe.hset("hash_key","chenhuachao",9)
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>

>>> pipe.hset("hash_key","wanger",10)
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>

>>> pipe.execute()
[1L, 1L, 1L]
>>> 

2、批量读取数据

>>> pipe.hget("hash_key","leizhu900516")
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>

>>> pipe.hget("hash_key","chenhuachao")
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>

>>> pipe.hget("hash_key","wanger")
Pipeline<ConnectionPool<Connection<host=192.168.8.176,port=6379,db=0>>>

>>> result = pipe.execute()

>>> print result
['8', '9', '10']  #有序的列表
>>>

总结:redis的pipeline就是这么简单,实际生产环境,根据需要去编写相应的代码。思路同理,如:

redis_db = redis.Redis(host='127.0.0.1',port=6379)
data = ['zhangsan', 'lisi', 'wangwu']

with redis_db.pipeline(transaction=False) as pipe:
  for i in data:
    pipe.zscore(self.key, i)

  result = pipe.execute()

print result
# [100, 80, 78]

线上的redis一般都是集群模式,集群模式下使用pipeline的时候,在创建pipeline的对象时,需要指定

pipe =conn.pipeline(transaction=False)

经过线上实测,利用pipeline取值3500条数据,大约需要900ms,如果配合线程or协程来使用,每秒返回1W数据是没有问题的,基本能满足大部分业务。

以上这篇python使用pipeline批量读写redis的方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python中Proxypool库的安装与配置

Python中Proxypool库的安装与配置

从github上下载,链接为:https://github.com/jhao104/proxy_pool 下载好之后解压文件,然后将文件夹目录内的D:\proxy_pool-master...

python KNN算法实现鸢尾花数据集分类

python KNN算法实现鸢尾花数据集分类

一、knn算法描述 1.基本概述 knn算法,又叫k-近邻算法。属于一个分类算法,主要思想如下: 一个样本在特征空间中的k个最近邻的样本中的大多数都属于某一个类别,则该样本也属于这个...

详解如何在Apache中运行Python WSGI应用

在生产环境上,一般会使用比较健壮的Web服务器,如Apache来运行我们的应用。如果我们的Web应用是采用Python开发,而且符合WSGI规范,比如基于Django,Flask等框架,...

Python pickle类库介绍(对象序列化和反序列化)

一、pickle pickle模块用来实现python对象的序列化和反序列化。通常地pickle将python对象序列化为二进制流或文件。   python对象与文件之间的序列...

Python读取视频的两种方法(imageio和cv2)

用python读取视频有两种主要方法,大家可依据自己的需求进行使用。 方法一: 使用imageio库,没有安装的可用pip安装或自己下载,安装好后重启终端即可调用。 import p...