Python-ElasticSearch搜索查询的讲解

yipeiwu_com6年前Python基础

Elasticsearch 是一个开源的搜索引擎,建立在一个全文搜索引擎库 Apache Lucene™ 基础之上。 Lucene 可能是目前存在的,不论开源还是私有的,拥有最先进,高性能和全功能搜索引擎功能的库。但是 Lucene 仅仅只是一个库。为了利用它,你需要编写 Java 程序,并在你的 java 程序里面直接集成 Lucene 包。 更坏的情况是,你需要对信息检索有一定程度的理解才能明白 Lucene 是怎么工作的。Lucene 是 很 复杂的。

在上一篇文章中介绍了ElasticSearch的简单使用,接下来记录一下ElasticSearch的查询:

查询所有数据

# 搜索所有数据
es.search(index="my_index",doc_type="test_type")
# 或者
body = {
  "query":{
    "match_all":{}
  }
}
es.search(index="my_index",doc_type="test_type",body=body)

term与terms

# term
body = {
  "query":{
    "term":{
      "name":"python"
    }
  }
}
# 查询name="python"的所有数据
es.search(index="my_index",doc_type="test_type",body=body)
# terms
body = {
  "query":{
    "terms":{
      "name":[
        "python","android"
      ]
    }
  }
}
# 搜索出name="python"或name="android"的所有数据
es.search(index="my_index",doc_type="test_type",body=body)

match与multi_match

# match:匹配name包含python关键字的数据
body = {
  "query":{
    "match":{
      "name":"python"
    }
  }
}
# 查询name包含python关键字的数据
es.search(index="my_index",doc_type="test_type",body=body)
# multi_match:在name和addr里匹配包含深圳关键字的数据
body = {
  "query":{
    "multi_match":{
      "query":"深圳",
      "fields":["name","addr"]
    }
  }
}
# 查询name和addr包含"深圳"关键字的数据
es.search(index="my_index",doc_type="test_type",body=body)

ids

body = {
  "query":{
    "ids":{
      "type":"test_type",
      "values":[
        "1","2"
      ]
    }
  }
}
# 搜索出id为1或2d的所有数据
es.search(index="my_index",doc_type="test_type",body=body)

复合查询bool

bool有3类查询关系,must(都满足),should(其中一个满足),must_not(都不满足)

body = {
  "query":{
    "bool":{
      "must":[
        {
          "term":{
            "name":"python"
          }
        },
        {
          "term":{
            "age":18
          }
        }
      ]
    }
  }
}
# 获取name="python"并且age=18的所有数据
es.search(index="my_index",doc_type="test_type",body=body)

切片式查询

body = {
  "query":{
    "match_all":{}
  }
  "from":2  # 从第二条数据开始
  "size":4  # 获取4条数据
}
# 从第2条数据开始,获取4条数据
es.search(index="my_index",doc_type="test_type",body=body)

范围查询

body = {
  "query":{
    "range":{
      "age":{
        "gte":18,    # >=18
        "lte":30    # <=30
      }
    }
  }
}
# 查询18<=age<=30的所有数据
es.search(index="my_index",doc_type="test_type",body=body)

前缀查询

body = {
  "query":{
    "prefix":{
      "name":"p"
    }
  }
}
# 查询前缀为"赵"的所有数据
es.search(index="my_index",doc_type="test_type",body=body)

通配符查询

body = {
  "query":{
    "wildcard":{
      "name":"*id"
    }
  }
}
# 查询name以id为后缀的所有数据
es.search(index="my_index",doc_type="test_type",body=body)

排序

body = {
  "query":{
    "match_all":{}
  }
  "sort":{
    "age":{         # 根据age字段升序排序
      "order":"asc"    # asc升序,desc降序
    }
  }
}

filter_path

响应过滤

# 只需要获取_id数据,多个条件用逗号隔开
es.search(index="my_index",doc_type="test_type",filter_path=["hits.hits._id"])
# 获取所有数据
es.search(index="my_index",doc_type="test_type",filter_path=["hits.hits._*"])

count

执行查询并获取该查询的匹配数

# 获取数据量
es.count(index="my_index",doc_type="test_type")

度量类聚合

  • 获取最小值
body = {
  "query":{
    "match_all":{}
  },
  "aggs":{            # 聚合查询
    "min_age":{         # 最小值的key
      "min":{         # 最小
        "field":"age"    # 查询"age"的最小值
      }
    }
  }
}
# 搜索所有数据,并获取age最小的值
es.search(index="my_index",doc_type="test_type",body=body)
  • 获取最大值
body = {
  "query":{
    "match_all":{}
  },
  "aggs":{            # 聚合查询
    "max_age":{         # 最大值的key
      "max":{         # 最大
        "field":"age"    # 查询"age"的最大值
      }
    }
  }
}
# 搜索所有数据,并获取age最大的值
es.search(index="my_index",doc_type="test_type",body=body)
  • 获取和
body = {
  "query":{
    "match_all":{}
  },
  "aggs":{            # 聚合查询
    "sum_age":{         # 和的key
      "sum":{         # 和
        "field":"age"    # 获取所有age的和
      }
    }
  }
}
# 搜索所有数据,并获取所有age的和
es.search(index="my_index",doc_type="test_type",body=body)
  • 获取平均值
body = {
  "query":{
    "match_all":{}
  },
  "aggs":{            # 聚合查询
    "avg_age":{         # 平均值的key
      "sum":{         # 平均值
        "field":"age"    # 获取所有age的平均值
      }
    }
  }
}
# 搜索所有数据,获取所有age的平均值
es.search(index="my_index",doc_type="test_type",body=body)

更多的搜索用法:

https://elasticsearch-py.readthedocs.io/en/master/api.html

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。如果你想了解更多相关内容请查看下面相关链接

相关文章

使用Pandas对数据进行筛选和排序的实现

使用Pandas对数据进行筛选和排序的实现

筛选和排序是Excel中使用频率最多的功能,通过这个功能可以很方便的对数据表中的数据使用指定的条件进行筛选和计算,以获得需要的结果。在Pandas中通过.sort和.loc函数也可以实现...

python 读取DICOM头文件的实例

python 读取DICOM头文件的实例

用dicompyler软件打开dicom图像,头文件如图所示: 当然也可以直接读取: ds = dicom.read_file('H:\Data\data\\21662\\2.16...

python实现五子棋小游戏

python实现五子棋小游戏

本文实例为大家分享了python实现五子棋小游戏的具体代码,供大家参考,具体内容如下 暑假学了十几天python,然后用pygame模块写了一个五子棋的小游戏,代码跟有缘人分享一下。...

python中的set实现不重复的排序原理

python中的set实现不重复的排序原理

最近在尝试写选课系统的时候遇到一个问题:   1、存在两个类 School、Teacher ;   2、School实例中包含多个Teacher的实例,但又不可重复   本人想到在Sch...

pygame游戏之旅 创建游戏窗口界面

pygame游戏之旅 创建游戏窗口界面

pygame创建游戏窗口界面,供大家参考,具体内容如下 使用pygame前一定要先导入pygame而且肯定要先初始化pygame import pygame pygame.init(...