python实现爬山算法的思路详解

yipeiwu_com6年前Python基础

问题

找图中函数在区间[5,8]的最大值 

重点思路

爬山算法会收敛到局部最优,解决办法是初始值在定义域上随机取乱数100次,总不可能100次都那么倒霉。

实现

import numpy as np
import matplotlib.pyplot as plt
import math
# 搜索步长
DELTA = 0.01
# 定义域x从5到8闭区间
BOUND = [5,8]
# 随机取乱数100次
GENERATION = 100
def F(x):
  return math.sin(x*x)+2.0*math.cos(2.0*x)
def hillClimbing(x):
  while F(x+DELTA)>F(x) and x+DELTA<=BOUND[1] and x+DELTA>=BOUND[0]:
    x = x+DELTA
  while F(x-DELTA)>F(x) and x-DELTA<=BOUND[1] and x-DELTA>=BOUND[0]:
    x = x-DELTA
  return x,F(x)
def findMax():
  highest = [0,-1000]
  for i in range(GENERATION):
    x = np.random.rand()*(BOUND[1]-BOUND[0])+BOUND[0]
    currentValue = hillClimbing(x)
    print('current value is :',currentValue)
    
    if currentValue[1] > highest[1]:
      highest[:] = currentValue
  return highest
[x,y] = findMax()
print('highest point is x :{},y:{}'.format(x,y))

运行结果:

总结

以上所述是小编给大家介绍的python实现爬山算法的思路详解,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

相关文章

PyTorch线性回归和逻辑回归实战示例

PyTorch线性回归和逻辑回归实战示例

线性回归实战 使用PyTorch定义线性回归模型一般分以下几步: 1.设计网络架构 2.构建损失函数(loss)和优化器(optimizer) 3.训练(包括前馈(forward...

使用django的objects.filter()方法匹配多个关键字的方法

介绍: 今天在使用django的时候忽然想用到,如何匹配多个关键字的操作,我们知道django有一个objects.filter()方法,我们可以通过如下一句代码实现匹配数据库中titl...

使用python绘制人人网好友关系图示例

代码依赖:networkx matplotlib 复制代码 代码如下: #! /bin/env python# -*- coding: utf-8 -*-import urll...

python回调函数中使用多线程的方法

下面的demo是根据需求写的简单测试脚本 #!/usr/bin/env python # coding: utf-8 # 第一个列表为依赖组件和版本号,后面紧跟负责人名称 # 接着出...

python开发中module模块用法实例分析

本文实例讲述了python开发中module模块用法。分享给大家供大家参考,具体如下: 在python中,我们可以把一些功能模块化,就有一点类似于java中,把一些功能相关或者相同的代码...