python实现爬山算法的思路详解

yipeiwu_com6年前Python基础

问题

找图中函数在区间[5,8]的最大值 

重点思路

爬山算法会收敛到局部最优,解决办法是初始值在定义域上随机取乱数100次,总不可能100次都那么倒霉。

实现

import numpy as np
import matplotlib.pyplot as plt
import math
# 搜索步长
DELTA = 0.01
# 定义域x从5到8闭区间
BOUND = [5,8]
# 随机取乱数100次
GENERATION = 100
def F(x):
  return math.sin(x*x)+2.0*math.cos(2.0*x)
def hillClimbing(x):
  while F(x+DELTA)>F(x) and x+DELTA<=BOUND[1] and x+DELTA>=BOUND[0]:
    x = x+DELTA
  while F(x-DELTA)>F(x) and x-DELTA<=BOUND[1] and x-DELTA>=BOUND[0]:
    x = x-DELTA
  return x,F(x)
def findMax():
  highest = [0,-1000]
  for i in range(GENERATION):
    x = np.random.rand()*(BOUND[1]-BOUND[0])+BOUND[0]
    currentValue = hillClimbing(x)
    print('current value is :',currentValue)
    
    if currentValue[1] > highest[1]:
      highest[:] = currentValue
  return highest
[x,y] = findMax()
print('highest point is x :{},y:{}'.format(x,y))

运行结果:

总结

以上所述是小编给大家介绍的python实现爬山算法的思路详解,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

相关文章

python ctypes库2_指定参数类型和返回类型详解

python函数的参数类型和返回类型默认为int。 如果需要传递一个float值给dll,那么需要指定参数的类型。 如果需要返回一个flaot值到python中,那么需要指定返回数据的类...

Pandas 同元素多列去重的实例

有一些问题可能会遇到同元素多列去重问题,下面介绍一种非常简单效率也很快的做法,用pandas来实现。 首先我们看一下数据类型: G1 G2 a b b a c d d c e f...

Django实现auth模块下的登录注册与注销功能

Django实现auth模块下的登录注册与注销功能

看了好多登录注册和注销的教程,很乱,很迷,然后总结了一下,简单的做了一个登录,注册和注销的页面。 1,首先,使用pycharm创建一个项目 单击File —> 选中Django —...

django+xadmin+djcelery实现后台管理定时任务

django+xadmin+djcelery实现后台管理定时任务

继上一篇中间表的数据是动态的,图表展示的数据才比较准确。这里用到一个新的模块Djcelery,安装配置步骤如下: 1.安装 redis==2.10.6 celery==3.1.23 dj...

Python:Numpy 求平均向量的实例

如下所示: >>> import numpy as np >>> a = np.array([[1, 2, 3], [3, 1, 2]]) >...