python实现爬山算法的思路详解

yipeiwu_com6年前Python基础

问题

找图中函数在区间[5,8]的最大值 

重点思路

爬山算法会收敛到局部最优,解决办法是初始值在定义域上随机取乱数100次,总不可能100次都那么倒霉。

实现

import numpy as np
import matplotlib.pyplot as plt
import math
# 搜索步长
DELTA = 0.01
# 定义域x从5到8闭区间
BOUND = [5,8]
# 随机取乱数100次
GENERATION = 100
def F(x):
  return math.sin(x*x)+2.0*math.cos(2.0*x)
def hillClimbing(x):
  while F(x+DELTA)>F(x) and x+DELTA<=BOUND[1] and x+DELTA>=BOUND[0]:
    x = x+DELTA
  while F(x-DELTA)>F(x) and x-DELTA<=BOUND[1] and x-DELTA>=BOUND[0]:
    x = x-DELTA
  return x,F(x)
def findMax():
  highest = [0,-1000]
  for i in range(GENERATION):
    x = np.random.rand()*(BOUND[1]-BOUND[0])+BOUND[0]
    currentValue = hillClimbing(x)
    print('current value is :',currentValue)
    
    if currentValue[1] > highest[1]:
      highest[:] = currentValue
  return highest
[x,y] = findMax()
print('highest point is x :{},y:{}'.format(x,y))

运行结果:

总结

以上所述是小编给大家介绍的python实现爬山算法的思路详解,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

相关文章

爬山算法简介和Python实现实例

一、爬山法简介 爬山法(climbing method)是一种优化算法,其一般从一个随机的解开始,然后逐步找到一个最优解(局部最优)。 假定所求问题有多个参数,我们在通过爬山法逐步获得最...

手把手教你Python yLab的绘制折线图的画法

手把手教你Python yLab的绘制折线图的画法

Python的可视化工具有很多,数不胜数,各有优劣。本文就对其中的pylab进行介绍。之所以介绍这一款,是因为它和Matlab的强烈相似度,如果你使用过Matlab,那么相信pylab你...

读写json中文ASCII乱码问题的解决方法

今天要帮前端写一个小后台,就是读取数据然后转成json送给他,让他去展示。数据很简单,但是处理的时候遇到了一个问题,文件中涉及到了中文的处理,每次处理完写的json格式就是ASCII码,...

Linux 发邮件磁盘空间监控(python)

核心代码: #!/usr/bin/python # -*- coding: UTF-8 -*- import smtplib import os import commands,...

Python3.5运算符操作实例详解

Python3.5运算符操作实例详解

本文实例讲述了Python3.5运算符操作。分享给大家供大家参考,具体如下: 1、运算符的分类 2、算术运算符 示例代码: #!/usr/bin/env python #...