python实现爬山算法的思路详解

yipeiwu_com6年前Python基础

问题

找图中函数在区间[5,8]的最大值 

重点思路

爬山算法会收敛到局部最优,解决办法是初始值在定义域上随机取乱数100次,总不可能100次都那么倒霉。

实现

import numpy as np
import matplotlib.pyplot as plt
import math
# 搜索步长
DELTA = 0.01
# 定义域x从5到8闭区间
BOUND = [5,8]
# 随机取乱数100次
GENERATION = 100
def F(x):
  return math.sin(x*x)+2.0*math.cos(2.0*x)
def hillClimbing(x):
  while F(x+DELTA)>F(x) and x+DELTA<=BOUND[1] and x+DELTA>=BOUND[0]:
    x = x+DELTA
  while F(x-DELTA)>F(x) and x-DELTA<=BOUND[1] and x-DELTA>=BOUND[0]:
    x = x-DELTA
  return x,F(x)
def findMax():
  highest = [0,-1000]
  for i in range(GENERATION):
    x = np.random.rand()*(BOUND[1]-BOUND[0])+BOUND[0]
    currentValue = hillClimbing(x)
    print('current value is :',currentValue)
    
    if currentValue[1] > highest[1]:
      highest[:] = currentValue
  return highest
[x,y] = findMax()
print('highest point is x :{},y:{}'.format(x,y))

运行结果:

总结

以上所述是小编给大家介绍的python实现爬山算法的思路详解,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

相关文章

Pytorch实现GoogLeNet的方法

Pytorch实现GoogLeNet的方法

GoogLeNet也叫InceptionNet,在2014年被提出,如今已到V4版本。GoogleNet比VGGNet具有更深的网络结构,一共有22层,但是参数比AlexNet要少12倍...

把vgg-face.mat权重迁移到pytorch模型示例

最近使用pytorch时,需要用到一个预训练好的人脸识别模型提取人脸ID特征,想到很多人都在用用vgg-face,但是vgg-face没有pytorch的模型,于是写个vgg-face....

为Python的web框架编写MVC配置来使其运行的教程

为Python的web框架编写MVC配置来使其运行的教程

现在,ORM框架、Web框架和配置都已就绪,我们可以开始编写一个最简单的MVC,把它们全部启动起来。 通过Web框架的@decorator和ORM框架的Model支持,可以很容易地编写一...

python回调函数用法实例分析

本文实例讲述了python回调函数用法。分享给大家供大家参考。具体分析如下: 软件模块之间总是存在着一定的接口,从调用方式上,可以把他们分为三类:同步调用、回调和异步调用。同步调用是一种...

Django发送邮件和itsdangerous模块的配合使用解析

项目需求:用户注册页面注册之后,系统会发送一封邮件到用户邮箱,用户点击链接以激活账户,其中链接中的用户信息需要加密处理一下 其中激活自己邮箱的smtp服务的操作就不在加以说明,菜鸟教程...