python实现爬山算法的思路详解

yipeiwu_com6年前Python基础

问题

找图中函数在区间[5,8]的最大值 

重点思路

爬山算法会收敛到局部最优,解决办法是初始值在定义域上随机取乱数100次,总不可能100次都那么倒霉。

实现

import numpy as np
import matplotlib.pyplot as plt
import math
# 搜索步长
DELTA = 0.01
# 定义域x从5到8闭区间
BOUND = [5,8]
# 随机取乱数100次
GENERATION = 100
def F(x):
  return math.sin(x*x)+2.0*math.cos(2.0*x)
def hillClimbing(x):
  while F(x+DELTA)>F(x) and x+DELTA<=BOUND[1] and x+DELTA>=BOUND[0]:
    x = x+DELTA
  while F(x-DELTA)>F(x) and x-DELTA<=BOUND[1] and x-DELTA>=BOUND[0]:
    x = x-DELTA
  return x,F(x)
def findMax():
  highest = [0,-1000]
  for i in range(GENERATION):
    x = np.random.rand()*(BOUND[1]-BOUND[0])+BOUND[0]
    currentValue = hillClimbing(x)
    print('current value is :',currentValue)
    
    if currentValue[1] > highest[1]:
      highest[:] = currentValue
  return highest
[x,y] = findMax()
print('highest point is x :{},y:{}'.format(x,y))

运行结果:

总结

以上所述是小编给大家介绍的python实现爬山算法的思路详解,希望对大家有所帮助,如果大家有任何疑问欢迎给我留言,小编会及时回复大家的!

相关文章

python调用动态链接库的基本过程详解

python调用动态链接库的基本过程详解

动态链接库在Windows中为.dll文件,在linux中为.so文件。以linux平台为例说明python调用.so文件的使用方法。 本例中默认读者已经掌握动态链接库的生成方法,如果不...

Pandas时间序列重采样(resample)方法中closed、label的作用详解

Pandas提供了便捷的方式对时间序列进行重采样,根据时间粒度的变大或者变小分为降采样和升采样: 降采样:时间粒度变大。例如,原来是按天统计的数据,现在变成按周统计。降采样会涉及到...

Apache,wsgi,django 程序部署配置方法详解

Apache,wsgi,django 程序部署配置方法详解

本文实例讲述了Apache,wsgi,django 程序部署配置方法。分享给大家供大家参考,具体如下: 前面写过一篇文章,ngixn,uwsgi,django,python 环境配置,有...

python实战教程之自动扫雷

python实战教程之自动扫雷

前言 自动扫雷一般分为两种,一种是读取内存数据,而另一种是通过分析图片获得数据,并通过模拟鼠标操作,这里我用的是第二种方式。 一、准备工作 1.扫雷游戏 我是win10,没有默认的扫...

python编写分类决策树的代码

python编写分类决策树的代码

决策树通常在机器学习中用于分类。 优点:计算复杂度不高,输出结果易于理解,对中间值缺失不敏感,可以处理不相关特征数据。 缺点:可能会产生过度匹配问题。 适用数据类型:数值型和标称...