TensorFlow的权值更新方法

yipeiwu_com5年前Python基础

一. MovingAverage权值滑动平均更新

1.1 示例代码:

def create_target_q_network(self,state_dim,action_dim,net):
  state_input = tf.placeholder("float",[None,state_dim])
  action_input = tf.placeholder("float",[None,action_dim])

  ema = tf.train.ExponentialMovingAverage(decay=1-TAU)
  target_update = ema.apply(net)
  target_net = [ema.average(x) for x in net]

  layer1 = tf.nn.relu(tf.matmul(state_input,target_net[0]) + target_net[1])
  layer2 = tf.nn.relu(tf.matmul(layer1,target_net[2]) + tf.matmul(action_input,target_net[3]) + target_net[4])
  q_value_output = tf.identity(tf.matmul(layer2,target_net[5]) + target_net[6])

  return state_input,action_input,q_value_output,target_update

def update_target(self):
  self.sess.run(self.target_update)
  

其中,TAU=0.001,net是原始网络(该示例代码来自DDPG算法,经过滑动更新后的target_net是目标网络 )

第一句 tf.train.ExponentialMovingAverage,创建一个权值滑动平均的实例;

第二句 apply创建所训练模型参数的一个复制品(shadow_variable),并对这个复制品增加一个保留权值滑动平均的op,函数average()或average_name()可以用来获取最终这个复制品(平滑后)的值的。

更新公式为:

shadow_variable = decay * shadow_variable + (1 - decay) * variable

在上述代码段中,target_net是shadow_variable,net是variable

1.2 tf.train.ExponentialMovingAverage.apply(var_list=None)

var_list必须是Variable或Tensor形式的列表。这个方法对var_list中所有元素创建一个复制,当其是Variable类型时,shadow_variable被初始化为variable的初值,当其是Tensor类型时,初始化为0,无偏。

函数返回一个进行权值平滑的op,因此更新目标网络时单独run这个函数就行。

1.3 tf.train.ExponentialMovingAverage.average(var)

用于获取var的滑动平均结果。

二. tf.train.Optimizer更新网络权值

2.1 tf.train.Optimizer

tf.train.Optimizer允许网络通过minimize()损失函数自动进行权值更新,此时tf.train.Optimizer.minimize()做了两件事:计算梯度,并把梯度自动更新到权值上。

此外,tensorflow也允许用户自己计算梯度,并做处理后应用给权值进行更新,此时分为以下三个步骤:

1.利用tf.train.Optimizer.compute_gradients计算梯度

2.对梯度进行自定义处理

3.利用tf.train.Optimizer.apply_gradients更新权值

tf.train.Optimizer.compute_gradients(loss, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None) 

返回一个(梯度,权值)的列表对。

tf.train.Optimizer.apply_gradients(grads_and_vars, global_step=None, name=None)

返回一个更新权值的op,因此可以用它的返回值ret进行sess.run(ret)

2.2 其它

此外,tensorflow还提供了其它计算梯度的方法:

• tf.gradients(ys, xs, grad_ys=None, name='gradients', colocate_gradients_with_ops=False, gate_gradients=False, aggregation_method=None)

该函数计算ys在xs方向上的梯度,需要注意与train.compute_gradients所不同的地方是,该函数返回一组dydx dydx的列表,而不是梯度-权值对。

其中,gate_gradients是在ys方向上的初始梯度,个人理解可以看做是偏微分链式求导中所需要的。

• tf.stop_gradient(input, name=None)

该函数告知整个graph图中,对input不进行梯度计算,将其伪装成一个constant常量。比如,可以用在类似于DQN算法中的目标函数:

cost=|r+Q next −Q current | cost=|r+Qnext−Qcurrent|

可以事先声明

y=tf.stop_gradient(r+Q next r+Qnext)

以上这篇TensorFlow的权值更新方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

pycharm远程开发项目的实现步骤

pycharm远程开发项目的实现步骤

你是不是在学习python的时候在使用虚拟机系统进行开发,来回切换很是不方便,那么今天给大家推荐一个pycharm强大的功能。 接下来我们利用这个django项目创建一个子app,测验...

python初学者,用python实现基本的学生管理系统(python3)代码实例

这个是用python实现的基本的增删改查的学生管理系统吧,其中主要是对输入的数据进行合法性检测的问题,这次又对函数进行了练习!掌握函数更加熟练了!二话不说先贴代码,一切问题请看注释,都很...

python复制文件到指定目录的实例

周末出去爬山,照了一大堆照片回来,照片同时存储为jpg和DNG格式,我用adobe bridge将dng格式的照片中要保留的筛选出来后,就不想再对着一张张去挑jpg的照片了,于是用pyt...

Python算法的时间复杂度和空间复杂度(实例解析)

算法复杂度分为时间复杂度和空间复杂度。 其作用: 时间复杂度是指执行算法所需要的计算工作量; 而空间复杂度是指执行这个算法所需要的内存空间。 (算法的复杂性体现在运行该算法时的计算...

python+selenium select下拉选择框定位处理方法

一、前言 总结一下python+selenium select下拉选择框定位处理的两种方式,以备后续使用时查询; 二、直接定位(XPath) 使用Firebug找到需要定位到的元素,直接...