TensorFlow的权值更新方法

yipeiwu_com6年前Python基础

一. MovingAverage权值滑动平均更新

1.1 示例代码:

def create_target_q_network(self,state_dim,action_dim,net):
  state_input = tf.placeholder("float",[None,state_dim])
  action_input = tf.placeholder("float",[None,action_dim])

  ema = tf.train.ExponentialMovingAverage(decay=1-TAU)
  target_update = ema.apply(net)
  target_net = [ema.average(x) for x in net]

  layer1 = tf.nn.relu(tf.matmul(state_input,target_net[0]) + target_net[1])
  layer2 = tf.nn.relu(tf.matmul(layer1,target_net[2]) + tf.matmul(action_input,target_net[3]) + target_net[4])
  q_value_output = tf.identity(tf.matmul(layer2,target_net[5]) + target_net[6])

  return state_input,action_input,q_value_output,target_update

def update_target(self):
  self.sess.run(self.target_update)
  

其中,TAU=0.001,net是原始网络(该示例代码来自DDPG算法,经过滑动更新后的target_net是目标网络 )

第一句 tf.train.ExponentialMovingAverage,创建一个权值滑动平均的实例;

第二句 apply创建所训练模型参数的一个复制品(shadow_variable),并对这个复制品增加一个保留权值滑动平均的op,函数average()或average_name()可以用来获取最终这个复制品(平滑后)的值的。

更新公式为:

shadow_variable = decay * shadow_variable + (1 - decay) * variable

在上述代码段中,target_net是shadow_variable,net是variable

1.2 tf.train.ExponentialMovingAverage.apply(var_list=None)

var_list必须是Variable或Tensor形式的列表。这个方法对var_list中所有元素创建一个复制,当其是Variable类型时,shadow_variable被初始化为variable的初值,当其是Tensor类型时,初始化为0,无偏。

函数返回一个进行权值平滑的op,因此更新目标网络时单独run这个函数就行。

1.3 tf.train.ExponentialMovingAverage.average(var)

用于获取var的滑动平均结果。

二. tf.train.Optimizer更新网络权值

2.1 tf.train.Optimizer

tf.train.Optimizer允许网络通过minimize()损失函数自动进行权值更新,此时tf.train.Optimizer.minimize()做了两件事:计算梯度,并把梯度自动更新到权值上。

此外,tensorflow也允许用户自己计算梯度,并做处理后应用给权值进行更新,此时分为以下三个步骤:

1.利用tf.train.Optimizer.compute_gradients计算梯度

2.对梯度进行自定义处理

3.利用tf.train.Optimizer.apply_gradients更新权值

tf.train.Optimizer.compute_gradients(loss, var_list=None, gate_gradients=1, aggregation_method=None, colocate_gradients_with_ops=False, grad_loss=None) 

返回一个(梯度,权值)的列表对。

tf.train.Optimizer.apply_gradients(grads_and_vars, global_step=None, name=None)

返回一个更新权值的op,因此可以用它的返回值ret进行sess.run(ret)

2.2 其它

此外,tensorflow还提供了其它计算梯度的方法:

• tf.gradients(ys, xs, grad_ys=None, name='gradients', colocate_gradients_with_ops=False, gate_gradients=False, aggregation_method=None)

该函数计算ys在xs方向上的梯度,需要注意与train.compute_gradients所不同的地方是,该函数返回一组dydx dydx的列表,而不是梯度-权值对。

其中,gate_gradients是在ys方向上的初始梯度,个人理解可以看做是偏微分链式求导中所需要的。

• tf.stop_gradient(input, name=None)

该函数告知整个graph图中,对input不进行梯度计算,将其伪装成一个constant常量。比如,可以用在类似于DQN算法中的目标函数:

cost=|r+Q next −Q current | cost=|r+Qnext−Qcurrent|

可以事先声明

y=tf.stop_gradient(r+Q next r+Qnext)

以上这篇TensorFlow的权值更新方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现按特定格式对文件进行读写的方法示例

Python实现按特定格式对文件进行读写的方法示例

本文实例讲述了Python实现按特定格式对文件进行读写的方法。分享给大家供大家参考,具体如下: #! /usr/bin/env python #coding=utf-8 class...

Python使用Opencv实现图像特征检测与匹配的方法

Python使用Opencv实现图像特征检测与匹配的方法

特征检测是计算机对一张图像中最为明显的特征进行识别检测并将其勾画出来。大多数特征检测都会涉及图像的角点、边和斑点的识别、或者是物体的对称轴。 角点检测 是由Opencv的cornerH...

详谈python3中用for循环删除列表中元素的坑

for循环语句的对象是可迭代对象,可迭代对象需要实现__iter__或iter方法,并返回一个迭代器,什么是迭代器呢?迭代器只需要实现 __next__或next方法。 现在来验证一下列...

用Django实现一个可运行的区块链应用

用Django实现一个可运行的区块链应用

对数字货币的崛起感到新奇的我们,并且想知道其背后的技术——区块链是怎样实现的。   但是完全搞懂区块链并非易事,我喜欢在实践中学习,通过写代码来学习技术会掌握得更牢固。通过构建...

Python的面向对象思想分析

本文实例讲述了Python的面向对象思想。分享给大家供大家参考。具体分析如下: 面向对象的基本思想是封装,继承,多态。 首先是继承: 定义一个类: 复制代码 代码如下:class Bir...