24式加速你的Python(小结)

yipeiwu_com6年前Python基础

一,分析代码运行时间

第1式,测算代码运行时间

平凡方法

快捷方法(jupyter环境)

第2式,测算代码多次运行平均时间

平凡方法

快捷方法(jupyter环境)

第3式,按调用函数分析代码运行时间

平凡方法

快捷方法(jupyter环境)

第4式,按行分析代码运行时间

平凡方法

快捷方法(jupyter环境)

二,加速你的查找

第5式,用set而非list进行查找

低速方法

高速方法

第6式,用dict而非两个list进行匹配查找

低速方法

高速方法

三,加速你的循环

第7式,优先使用for循环而不是while循环

低速方法

高速方法

第8式,在循环体中避免重复计算

低速方法

高速方法

四,加速你的函数

第9式,用循环机制代替递归函数

低速方法

高速方法

第10式,用缓存机制加速递归函数

低速方法

高速方法

第11式,用numba加速Python函数

低速方法

高速方法

五,使用标准库函数进行加速

第12式,使用collections.Counter加速计数

低速方法

高速方法

第13式,使用collections.ChainMap加速字典合并

低速方法

高速方法

六,使用高阶函数进行加速

第14式,使用map代替推导式进行加速

低速方法

高速方法

第15式,使用filter代替推导式进行加速

低速方法

高速方法

七,使用numpy向量化进行加速

第16式,使用np.array代替list

低速方法

高速方法

第17式,使用np.ufunc代替math.func

低速方法

高速方法

第18式,使用np.where代替if

低速方法

高速方法

八,加速你的Pandas

第19式,使用csv文件读写代替excel文件读写

低速方法

高速方法

第20式,使用pandas多进程工具pandarallel

低速方法

高速方法

九,使用Dask进行加速

第21式,使用dask加速dataframe

低速方法

高速方法

第22式,使用dask.delayed进行加速

低速方法

高速方法

十,应用多线程多进程加速

第23式,应用多线程加速IO密集型任务

低速方法

高速方法

第24式,应用多进程加速CPU密集型任务

低速方法

高速方法

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python存取XML的常见方法实例分析

本文实例讲述了Python存取XML的常见方法。分享给大家供大家参考,具体如下: 目前而言,Python 3.2存取XML有以下四种方法: 1.Expat 2.DOM 3.SAX 4.E...

python argparser的具体使用

一.正常运行: 咱们随便写个文件: # test.py import argparse ap = argparse.ArgumentParser() ap.add_argumen...

使用Python 正则匹配两个特定字符之间的字符方法

如下所示: # -*- coding: cp936 -*- import re   string = ...

详解Python中的Descriptor描述符类

描述符是调和属性访问的一个类。描述符类可用来获取、设置或删除属性值。描述符对象是在类定义的时候构建在一个类中的。 一般来说,描述符是一个具有绑定行为的对象属性,其属性的访问被描述符协议方...

PyTorch使用cpu加载模型运算方式

没gpu没cuda支持的时候加载模型到cpu上计算 将 model = torch.load(path, map_location=lambda storage, loc: stor...