pandas 数据结构之Series的使用方法

yipeiwu_com6年前Python基础

1. Series

Series 是一个类数组的数据结构,同时带有标签(lable)或者说索引(index)。

1.1 下边生成一个最简单的Series对象,因为没有给Series指定索引,所以此时会使用默认索引(从0到N-1)。

# 引入Series和DataFrame
In [16]: from pandas import Series,DataFrame
In [17]: import pandas as pd

In [18]: ser1 = Series([1,2,3,4])

In [19]: ser1
Out[19]: 
0  1
1  2
2  3
3  4
dtype: int64

1.2 当要生成一个指定索引的Series 时候,可以这样:  

# 给index指定一个list
In [23]: ser2 = Series(range(4),index = ["a","b","c","d"])

In [24]: ser2
Out[24]: 
a  0
b  1
c  2
d  3
dtype: int64

1.3 也可以通过字典来创建Series对象

In [45]: sdata = {'Ohio': 35000, 'Texas': 71000, 'Oregon': 16000, 'Utah': 5000}

In [46]: ser3 = Series(sdata)
# 可以发现,用字典创建的Series是按index有序的
In [47]: ser3
Out[47]: 
Ohio   35000
Oregon  16000
Texas   71000
Utah    5000
dtype: int64

在用字典生成Series的时候,也可以指定索引,当索引中值对应的字典中的值不存在的时候,则此索引的值标记为Missing,NA,并且可以通过函数(pandas.isnull,pandas.notnull)来确定哪些索引对应的值是没有的。 

In [48]: states = ['California', 'Ohio', 'Oregon', 'Texas']

In [49]: ser3 = Series(sdata,index = states)

In [50]: ser3
Out[50]: 
California    NaN
Ohio     35000.0
Oregon    16000.0
Texas     71000.0
dtype: float64
# 判断哪些值为空
In [51]: pd.isnull(ser3)
Out[51]: 
California   True
Ohio     False
Oregon    False
Texas     False
dtype: bool

In [52]: pd.notnull(ser3)
Out[52]: 
California  False
Ohio      True
Oregon     True
Texas     True
dtype: bool

1.4 访问Series中的元素和索引:

# 访问索引为"a"的元素
In [25]: ser2["a"]
Out[25]: 0
# 访问索引为"a","c"的元素
In [26]: ser2[["a","c"]]
Out[26]: 
a  0
c  2
dtype: int64
# 获取所有的值
In [27]: ser2.values
Out[27]: array([0, 1, 2, 3])
# 获取所有的索引
In [28]: ser2.index
Out[28]: Index([u'a', u'b', u'c', u'd'], dtype='object')

1.5 简单运算

在pandas的Series中,会保留NumPy的数组操作(用布尔数组过滤数据,标量乘法,以及使用数学函数),并同时保持引用的使用

In [34]: ser2[ser2 > 2]
Out[34]: 
a  64
d   3
dtype: int64

In [35]: ser2 * 2
Out[35]: 
a  128
b   2
c   4
d   6
dtype: int64

In [36]: np.exp(ser2)
Out[36]: 
a  6.235149e+27
b  2.718282e+00
c  7.389056e+00
d  2.008554e+01
dtype: float64

1.6 Series的自动对齐

Series的一个重要功能就是自动对齐(不明觉厉),看看例子就明白了。 差不多就是不同Series对象运算的时候根据其索引进行匹配计算。

# ser3 的内容
In [60]: ser3
Out[60]: 
Ohio   35000
Oregon  16000
Texas   71000
Utah    5000
dtype: int64
# ser4 的内容
In [61]: ser4
Out[61]: 
California    NaN
Ohio     35000.0
Oregon    16000.0
Texas     71000.0
dtype: float64
# 相同索引值的元素相加
In [62]: ser3 + ser4
Out[62]: 
California     NaN
Ohio      70000.0
Oregon     32000.0
Texas     142000.0
Utah        NaN
dtype: float64

1.7 命名

Series对象本身,以及索引都有一个 name 属性

In [64]: ser4.index.name = "state"

In [65]: ser4.name = "population"

In [66]: ser4
Out[66]: 
state
California    NaN
Ohio     35000.0
Oregon    16000.0
Texas     71000.0
Name: population, dtype: float64

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

理解python正则表达式

在python中,对正则表达式的支持是通过re模块来支持的。使用re的步骤是先把表达式字符串编译成pattern实例,然后在使用pattern去匹配文本获取结果。 其实也有另外一种方式,...

如何利用pygame实现简单的五子棋游戏

如何利用pygame实现简单的五子棋游戏

前言 写程序已经丢掉很长一段时间了,最近觉得完全把技术丢掉可能是个死路,还是应该捡起来,所以打算借CSDN来记录学习过程, 由于以前没事的时候断断续续学习过python和用flask框...

Python @property使用方法解析

1. 作用 将类方法转换为类属性,可以用 . 直接获取属性值或者对属性进行赋值 2.实现方式 使用property类来实现,也可以使用property装饰器实现,二者本质是一样的。多...

python删除列表元素的三种方法(remove,pop,del)

remove 删除单个元素,删除首个符合条件的元素,按值删除,返回值为空 List_remove = [1, 2, 2, 2, 3, 4] print(List_remove.re...

Python numpy中矩阵的基本用法汇总

Python numpy中矩阵的基本用法汇总

Python矩阵的基本用法 mat()函数将目标数据的类型转化成矩阵(matrix) 1,mat()函数和array()函数的区别 Numpy函数库中存在两种不同的数据类型(矩阵ma...