Python二进制文件读取并转换为浮点数详解

yipeiwu_com5年前Python基础

本文所用环境:

Python 3.6.5 |Anaconda custom (64-bit)|

引言

由于某些原因,需要用python读取二进制文件,这里主要用到struct包,而这个包里面的方法主要是unpack、pack、calcsize。详细介绍可以看:Python Struct 官方文档。这里主要讨论,python二进制转浮点数的操作。

python中一个float类型的数占4个字节。

二进制数据转float,可以用struct.unpack()来实现。

小文件读取

较小的文件,可以一次读取:

首先导入所需的包:

import numpy as np
import struct
Python

例如:我需要读取一个名为filename,存放着形状为[100,1025]的浮点数的文件。可以采用以下办法

# 加载测试数据
f = open('filename','rb')
# 102500为文档中包含的数字个数,而一个浮点数占4个字节
data_raw = struct.unpack('f'*102500,f.read(4*102500))
f.close()
verify_data = np.asarray(verify_data_raw).reshape(-1,1025)

大文件处理方法

我需要处理的文件大小有38.1G,存放着[10000000,1025]大小的向量。

关于大文件的处理,我参考了这文章,但是,这个方法不能很好的将二进制文件转换成浮点数。

所以我想到了另外一种办法:

通过Linux命令切割文件

通过split命令将38.1G的文件按照指定大小切割,

split -b 820000k -a 2 filename data_ 

上述代码的意思是,指定每块大小为820000k,-a 2代表2位数命名,‘data_'代表前缀是'data_'

最终生成49个文件(字典序 aa – bw),前48个文件每个204800行 最后一个文件 169600行

通过python循环读取文件

首先构建词汇表:

voc = ['a','b','c','d','e','f','g','h','i','j','k','l',
'm','n','o','p','q','r','s','t','u','v','w','x',
'y','z']
voc_short = ['a','b','c','d','e','f','g','h','i','j','k','l',
'm','n','o','p','q','r','s','t','u','v']

为了方便读取,将49个二进制文件转换成numpy专用二进制格式*.npy

for i in voc:
data_name = 'data_a'+str(i)
f = open(data_name,'rb')
data_raw = struct.unpack('f'*209920000,f.read(4*209920000))
f.close()
data = np.asarray(data_raw).reshape(-1,1025)
np.save(data_name+'.npy',data) # 保存data_a*.npy文件
for i in voc_short:
data_name = 'data_b'+str(i)
f = open(data_name,'rb')
data_raw = struct.unpack('f'*209920000,f.read(4*209920000))
f.close()
data = np.asarray(data_raw).reshape(-1,1025)
np.save(data_name+'.npy',data) # 保存data_b*.npy文件
data_name = 'data_bw'
f = open(data_name,'rb')
data_raw = struct.unpack('f'*173840000,f.read(4*173840000))
np.save(data_name+'.npy',data_raw) # 保存data_bw.npy文件

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python反射用法实例简析

本文实例讲述了Python反射用法。分享给大家供大家参考,具体如下: class Person: def __init__(self): self.name = "zjg...

Python读写zip压缩文件的方法

Python 内置的 zipfile 模块可以对文件(夹)进行ZIP格式的压缩和读取操作。要进行相关操作,首先需要实例化一个 ZipFile 对象。ZipFile 接受一个字符串格式压缩...

python读取xlsx的方法

如下所示: import xlrd data = xlrd.open_workbook('path') # 第1个sheet table = data.sheet()[0]...

Django项目中包含多个应用时对url的配置方法

Django项目中包含多个应用时对url的配置方法

一个Django工程中多数情况下会存在多个应用, 如何针对多个应用的url进行配置呢, 有以下两种方案: 1、在Django工程的urls.py中针对每个应用分别配置不同的url路径 2...

tensorflow入门:tfrecord 和tf.data.TFRecordDataset的使用

tensorflow入门:tfrecord 和tf.data.TFRecordDataset的使用

1.创建tfrecord tfrecord支持写入三种格式的数据:string,int64,float32,以列表的形式分别通过tf.train.BytesList、tf.train.I...