python sklearn库实现简单逻辑回归的实例代码

yipeiwu_com6年前Python基础

Sklearn简介

Scikit-learn(sklearn)是机器学习中常用的第三方模块,对常用的机器学习方法进行了封装,包括回归(Regression)、降维(Dimensionality Reduction)、分类(Classfication)、聚类(Clustering)等方法。当我们面临机器学习问题时,便可根据下图来选择相应的方法。

Sklearn具有以下特点:

  • 简单高效的数据挖掘和数据分析工具
  • 让每个人能够在复杂环境中重复使用
  • 建立NumPy、Scipy、MatPlotLib之上

代码如下所示:

import xlrd
import matplotlib.pyplot as plt
import numpy as np
from sklearn import model_selection
from sklearn.linear_model import LogisticRegression
from sklearn import metrics
data = xlrd.open_workbook('gua.xlsx')
sheet = data.sheet_by_index(0)
Density = sheet.col_values(6)
Sugar = sheet.col_values(7)
Res = sheet.col_values(8)
# 读取原始数据
X = np.array([Density, Sugar])
# y的尺寸为(17,)
y = np.array(Res)
X = X.reshape(17,2)
# 绘制分类数据
f1 = plt.figure(1)
plt.title('watermelon_3a')
plt.xlabel('density')
plt.ylabel('ratio_sugar')
# 绘制散点图(x轴为密度,y轴为含糖率)
plt.scatter(X[y == 0,0], X[y == 0,1], marker = 'o', color = 'k', s=100, label = 'bad')
plt.scatter(X[y == 1,0], X[y == 1,1], marker = 'o', color = 'g', s=100, label = 'good')
plt.legend(loc = 'upper right')
plt.show()
# 从原始数据中选取一半数据进行训练,另一半数据进行测试
X_train, X_test, y_train, y_test = model_selection.train_test_split(X, y, test_size=0.5, random_state=0)
# 逻辑回归模型
log_model = LogisticRegression()
# 训练逻辑回归模型
log_model.fit(X_train, y_train)
# 预测y的值
y_pred = log_model.predict(X_test)
# 查看测试结果
print(metrics.confusion_matrix(y_test, y_pred))
print(metrics.classification_report(y_test, y_pred))

总结

以上所述是小编给大家介绍的python sklearn库实现简单逻辑回归的实例代码,希望对大家有所帮助,如果大家有任何疑问请给我留言,小编会及时回复大家的。在此也非常感谢大家对【听图阁-专注于Python设计】网站的支持!
如果你觉得本文对你有帮助,欢迎转载,烦请注明出处,谢谢!

相关文章

Python iter()函数用法实例分析

本文实例讲述了Python iter()函数用法。分享给大家供大家参考,具体如下: python中的迭代器用起来非常灵巧,不仅可以迭代序列,也可以迭代表现出序列行为的对象,例如字典的键、...

python使用turtle库与random库绘制雪花

python使用turtle库与random库绘制雪花

本文实例为大家分享了python绘制雪花的具体代码,供大家参考,具体内容如下 代码非常容易理解,画着玩玩还是可以的。直接上代码 # -*- coding: utf-8 -*- """...

Python使用struct处理二进制的实例详解

Python使用struct处理二进制的实例详解 有的时候需要用python处理二进制数据,比如,存取文件,socket操作时.这时候,可以使用python的struct模块来完成.可以...

Python Django基础二之URL路由系统

Python Django基础二之URL路由系统

MVC和MTV框架 MVC  Web服务器开发领域里著名的MVC模式,所谓MVC就是把Web应用分为模型(M),控制器(C)和视图(V)三层,他们之间以一种插件式的、松耦合的方式连接...

用Python的SimPy库简化复杂的编程模型的介绍

在我遇到 SimPy 包的其中一位创始人 Klaus Miller 时,从他那里知道了这个包。Miller 博士阅读过几篇提出使用 Python 2.2+ 生成器实现半协同例程和“轻便”...