Pandas中resample方法详解

yipeiwu_com6年前Python基础

Pandas中的resample,重新采样,是对原样本重新处理的一个方法,是一个对常规时间序列数据重新采样和频率转换的便捷的方法。

方法的格式是:

DataFrame.resample(rule, how=None, axis=0, fill_method=None, closed=None, label=None, convention='start',kind=None, loffset=None, limit=None, base=0)

参数详解是:

参数 说明
freq 表示重采样频率,例如‘M'、‘5min',Second(15)
how='mean' 用于产生聚合值的函数名或数组函数,例如‘mean'、‘ohlc'、np.max等,默认是‘mean',其他常用的值由:‘first'、‘last'、‘median'、‘max'、‘min'
axis=0 默认是纵轴,横轴设置axis=1
fill_method = None 升采样时如何插值,比如‘ffill'、‘bfill'等
closed = ‘right' 在降采样时,各时间段的哪一段是闭合的,‘right'或‘left',默认‘right'
label= ‘right' 在降采样时,如何设置聚合值的标签,例如,9:30-9:35会被标记成9:30还是9:35,默认9:35
loffset = None 面元标签的时间校正值,比如‘-1s'或Second(-1)用于将聚合标签调早1秒
limit=None 在向前或向后填充时,允许填充的最大时期数
kind = None 聚合到时期(‘period')或时间戳(‘timestamp'),默认聚合到时间序列的索引类型
convention = None 当重采样时期时,将低频率转换到高频率所采用的约定(start或end)。默认‘end'

首先创建一个Series,采样频率为一分钟。

>>> index = pd.date_range('1/1/2000', periods=9, freq='T')
>>> series = pd.Series(range(9), index=index)
>>> series
2000-01-01 00:00:00  0
2000-01-01 00:01:00  1
2000-01-01 00:02:00  2
2000-01-01 00:03:00  3
2000-01-01 00:04:00  4
2000-01-01 00:05:00  5
2000-01-01 00:06:00  6
2000-01-01 00:07:00  7
2000-01-01 00:08:00  8
Freq: T, dtype: int64

降低采样频率为三分钟

>>> series.resample('3T').sum()
2000-01-01 00:00:00   3
2000-01-01 00:03:00  12
2000-01-01 00:06:00  21
Freq: 3T, dtype: int64

降低采样频率为三分钟,但是每个标签使用right来代替left。请注意,bucket中值的用作标签。

>>> series.resample('3T', label='right').sum()
2000-01-01 00:03:00   3
2000-01-01 00:06:00  12
2000-01-01 00:09:00  21
Freq: 3T, dtype: int64

降低采样频率为三分钟,但是关闭right区间。

>>> series.resample('3T', label='right', closed='right').sum()
2000-01-01 00:00:00   0
2000-01-01 00:03:00   6
2000-01-01 00:06:00  15
2000-01-01 00:09:00  15
Freq: 3T, dtype: int64

增加采样频率到30秒

>>> series.resample('30S').asfreq()[0:5] #select first 5 rows
2000-01-01 00:00:00   0
2000-01-01 00:00:30  NaN
2000-01-01 00:01:00   1
2000-01-01 00:01:30  NaN
2000-01-01 00:02:00   2
Freq: 30S, dtype: float64

增加采样频率到30S,使用pad方法填充nan值。

>>> series.resample('30S').pad()[0:5]
2000-01-01 00:00:00  0
2000-01-01 00:00:30  0
2000-01-01 00:01:00  1
2000-01-01 00:01:30  1
2000-01-01 00:02:00  2
Freq: 30S, dtype: int64

增加采样频率到30S,使用bfill方法填充nan值。

>>> series.resample('30S').bfill()[0:5]
2000-01-01 00:00:00  0
2000-01-01 00:00:30  1
2000-01-01 00:01:00  1
2000-01-01 00:01:30  2
2000-01-01 00:02:00  2
Freq: 30S, dtype: int64

通过apply运行一个自定义函数

>>> def custom_resampler(array_like):
...   return np.sum(array_like)+5
>>> series.resample('3T').apply(custom_resampler)
2000-01-01 00:00:00   8
2000-01-01 00:03:00  17
2000-01-01 00:06:00  26
Freq: 3T, dtype: int64

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python 实现数据结构-堆栈和队列的操作方法

队、栈和链表一样,在数据结构中非常基础一种数据结构,同样他们也有各种各样、五花八门的变形和实现方式。但不管他们形式上怎么变,队和栈都有其不变的最基本的特征,我们今天就从最基本,最简单的实...

python自定义时钟类、定时任务类

这是我使用python写的第一个类(也算是学习面向对象语言以来正式写的第一个解耦的类),记录下改进的过程。 分析需求 最初,因为使用time模块显示日期时,每次都要设置时间字符串的格式,...

python使用HTMLTestRunner导出饼图分析报告的方法

python使用HTMLTestRunner导出饼图分析报告的方法

目录如下: 这里有使用 HTMLTestRunner和 echarts.common.min.js文件[见百度网盘,这里给自己留个记录便于查询] unit_test.py代码如下:...

Python程序语言快速上手教程

Python程序语言快速上手教程

本来打算从网上找一篇入门教程,但因为Python很少是程序员的第一次接触程序所学的语言,所以网上现有的教程多不是很基础,还是决定自己写下这些。 如果没有程序基础的话,可能会觉得本文涵盖的...

Python字符串的常见操作实例小结

本文实例讲述了Python字符串的常见操作。分享给大家供大家参考,具体如下: 如果我们想要查看以下功能:help(mystr .find) 1.find 例: mystr="hell...