pandas 使用均值填充缺失值列的小技巧分享

yipeiwu_com6年前Python基础

pd.DataFrame中通常含有许多特征,有时候需要对每个含有缺失值的列,都用均值进行填充,代码实现可以这样:

for column in list(df.columns[df.isnull().sum() > 0]):
  mean_val = df[column].mean()
  df[column].fillna(mean_val, inplace=True)

# -------代码分解-------
# 判断哪些列有缺失值,得到series对象
df.isnull().sum() > 0
# output
contributors           True
coordinates            True
created_at            False
display_text_range        False
entities             False
extended_entities         True
favorite_count          False
favorited            False
full_text            False
geo                True
id                False
id_str              False
...

# 根据上一步结果,筛选需要填充的列
df.columns[df.isnull().sum() > 0]
# output
Index(['contributors', 'coordinates', 'extended_entities', 'geo',
    'in_reply_to_screen_name', 'in_reply_to_status_id',
    'in_reply_to_status_id_str', 'in_reply_to_user_id',
    'in_reply_to_user_id_str', 'place', 'possibly_sensitive',
    'possibly_sensitive_appealable', 'quoted_status', 'quoted_status_id',
    'quoted_status_id_str', 'retweeted_status'],
   dtype='object')

以上这篇pandas 使用均值填充缺失值列的小技巧分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python装饰器用法实例总结

本文实例讲述了Python装饰器用法。分享给大家供大家参考,具体如下: 写装饰器 装饰器只不过是一种函数,接收被装饰的可调用对象作为它的唯一参数,然后返回一个可调用对象(就像前面的简单例...

深入解析Python中的上下文管理器

1. 上下文管理器是什么? 举个例子,你在写Python代码的时候经常将一系列操作放在一个语句块中: (1)当某条件为真 – 执行这个语句块 (2)当某条件为真 – 循环执行这个语句块...

Python 查找list中的某个元素的所有的下标方法

如下所示: #!/usr/bin/env python #_*_ coding:utf-8 _*_ name = ['hello', 'world', 'a', 'b', 'c',...

Python中使用Inotify监控文件实例

Inotify地址:访问 # -*- coding:utf-8 -*- import os import pyinotify from functions import * WA...

python实现中文分词FMM算法实例

本文实例讲述了python实现中文分词FMM算法。分享给大家供大家参考。具体分析如下: FMM算法的最简单思想是使用贪心算法向前找n个,如果这n个组成的词在词典中出现,就ok,如果没有出...