pandas 使用均值填充缺失值列的小技巧分享

yipeiwu_com6年前Python基础

pd.DataFrame中通常含有许多特征,有时候需要对每个含有缺失值的列,都用均值进行填充,代码实现可以这样:

for column in list(df.columns[df.isnull().sum() > 0]):
  mean_val = df[column].mean()
  df[column].fillna(mean_val, inplace=True)

# -------代码分解-------
# 判断哪些列有缺失值,得到series对象
df.isnull().sum() > 0
# output
contributors           True
coordinates            True
created_at            False
display_text_range        False
entities             False
extended_entities         True
favorite_count          False
favorited            False
full_text            False
geo                True
id                False
id_str              False
...

# 根据上一步结果,筛选需要填充的列
df.columns[df.isnull().sum() > 0]
# output
Index(['contributors', 'coordinates', 'extended_entities', 'geo',
    'in_reply_to_screen_name', 'in_reply_to_status_id',
    'in_reply_to_status_id_str', 'in_reply_to_user_id',
    'in_reply_to_user_id_str', 'place', 'possibly_sensitive',
    'possibly_sensitive_appealable', 'quoted_status', 'quoted_status_id',
    'quoted_status_id_str', 'retweeted_status'],
   dtype='object')

以上这篇pandas 使用均值填充缺失值列的小技巧分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python编写通讯录通过数据库存储实现模糊查询功能

1.要求 数据库存储通讯录,要求按姓名/电话号码查询,查询条件只有一个输入入口,自动识别输入的是姓名还是号码,允许模糊查询。 2.实现功能 可通过输入指令进行操作。 (1)首先输入“ad...

python实现两个字典合并,两个list合并

1.两个字典:a={‘a':1,'b':2,'c':3} b= {‘aa':11,'bb':22,'cc':33} 合并1:dict(a,**b) 操作如下: >>>...

浅谈Python2.6和Python3.0中八进制数字表示的区别

在Python2.x中表示八进制的方式有两种:以'0'开头和以'0o'(字母o)开头:   Python2.7中: >>> 0100 64 >>&g...

Python提取频域特征知识点浅析

Python提取频域特征知识点浅析

在多数的现代语音识别系统中,人们都会用到频域特征。梅尔频率倒谱系数(MFCC),首先计算信号的功率谱,然后用滤波器和离散余弦变换的变换来提取特征。本文重点介绍如何提取MFCC特征。 首先...

django自定义Field实现一个字段存储以逗号分隔的字符串

实现了在一个字段存储以逗号分隔的字符串,返回一个相应的列表 复制代码 代码如下:from django import formsfrom django.db import modelsf...