pandas 使用均值填充缺失值列的小技巧分享

yipeiwu_com5年前Python基础

pd.DataFrame中通常含有许多特征,有时候需要对每个含有缺失值的列,都用均值进行填充,代码实现可以这样:

for column in list(df.columns[df.isnull().sum() > 0]):
  mean_val = df[column].mean()
  df[column].fillna(mean_val, inplace=True)

# -------代码分解-------
# 判断哪些列有缺失值,得到series对象
df.isnull().sum() > 0
# output
contributors           True
coordinates            True
created_at            False
display_text_range        False
entities             False
extended_entities         True
favorite_count          False
favorited            False
full_text            False
geo                True
id                False
id_str              False
...

# 根据上一步结果,筛选需要填充的列
df.columns[df.isnull().sum() > 0]
# output
Index(['contributors', 'coordinates', 'extended_entities', 'geo',
    'in_reply_to_screen_name', 'in_reply_to_status_id',
    'in_reply_to_status_id_str', 'in_reply_to_user_id',
    'in_reply_to_user_id_str', 'place', 'possibly_sensitive',
    'possibly_sensitive_appealable', 'quoted_status', 'quoted_status_id',
    'quoted_status_id_str', 'retweeted_status'],
   dtype='object')

以上这篇pandas 使用均值填充缺失值列的小技巧分享就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现对文件进行单词划分并去重排序操作示例

本文实例讲述了Python实现对文件进行单词划分并去重排序操作。分享给大家供大家参考,具体如下: 文件名:test1.txt 文件内容: But soft what light thr...

深入理解Python装饰器

装饰器简介: 装饰器(decorator)是一种高级Python语法。装饰器可以对一个函数、方法或者类进行加工。在Python中,我们有多种方法对函数和类进行加工,比如在Python闭包...

Python文档生成工具pydoc使用介绍

Python文档生成工具pydoc使用介绍

在Python中有很多很好的工具来生成字符串文档(docstring),比如说: epydoc、doxygen、sphinx,但始终觉得pydoc还是不错的工具,用法非常简单,功能也算不...

使用Python获取CPU、内存和硬盘等windowns系统信息的2个例子

例子一: Python用WMI模块获取windowns系统的硬件信息:硬盘分区、使用情况,内存大小,CPU型号,当前运行的进程,自启动程序及位置,系统的版本等信息。 复制代码 代码如下:...

一篇文章彻底搞懂Python中可迭代(Iterable)、迭代器(Iterator)与生成器(Generator)的概念

前言 在Python中可迭代(Iterable)、迭代器(Iterator)和生成器(Generator)这几个概念是经常用到的,初学时对这几个概念也是经常混淆,现在是时候把这几个概念搞...