python networkx 根据图的权重画图实现

yipeiwu_com5年前Python基础

首先输入边和边的权重,随后画出节点位置,根据权重大小划分实边和虚边

#coding:utf-8
#!/usr/bin/env python
"""
An example using Graph as a weighted network.
"""
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""
try:
  import matplotlib.pyplot as plt
except:
  raise
 
import networkx as nx
 
G=nx.Graph()
#添加带权边
G.add_edge('a','b',weight=0.6)
G.add_edge('a','c',weight=0.2)
G.add_edge('c','d',weight=0.1)
G.add_edge('c','e',weight=0.7)
G.add_edge('c','f',weight=0.9)
G.add_edge('a','d',weight=0.3)
#按权重划分为重权值得边和轻权值的边
elarge=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] >0.5]
esmall=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] <=0.5]
#节点位置
pos=nx.spring_layout(G) # positions for all nodes
#首先画出节点位置
# nodes
nx.draw_networkx_nodes(G,pos,node_size=700)
#根据权重,实线为权值大的边,虚线为权值小的边
# edges
nx.draw_networkx_edges(G,pos,edgelist=elarge,
          width=6)
nx.draw_networkx_edges(G,pos,edgelist=esmall,
          width=6,alpha=0.5,edge_color='b',style='dashed')
 
# labels标签定义
nx.draw_networkx_labels(G,pos,font_size=20,font_family='sans-serif')
 
plt.axis('off')
plt.savefig("weighted_graph.png") # save as png
plt.show() # display

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

强悍的Python读取大文件的解决方案

Python 环境下文件的读取问题,请参见拙文 Python基础之文件读取的讲解 这是一道著名的 Python 面试题,考察的问题是,Python 读取大文件和一般规模的文件时的区别,也...

Python中的lstrip()方法使用简介

 lstrip()方法返回所有字符被去除开头字符串(缺省为空格字符)的一个复本。 语法 以下是lstrip()方法的语法: str.lstrip([chars]) 参...

python实现图片批量压缩程序

 本文实例为大家分享了python实现图片批量压缩程序的具体代码,供大家参考,具体内容如下 说明 运行环境:Win10 Pycharm 程序没有用到面向对象编程方法,...

Python中shape计算矩阵的方法示例

本文实例讲述了Python中shape计算矩阵的方法。分享给大家供大家参考,具体如下: 看到机器学习算法时,注意到了shape计算矩阵的方法接下来就讲讲我的理解吧 >>&...

Python函数式编程指南(二):从函数开始

2. 从函数开始 2.1. 定义一个函数 如下定义了一个求和函数: 复制代码 代码如下: def add(x, y):     return x + y...