python networkx 根据图的权重画图实现

yipeiwu_com5年前Python基础

首先输入边和边的权重,随后画出节点位置,根据权重大小划分实边和虚边

#coding:utf-8
#!/usr/bin/env python
"""
An example using Graph as a weighted network.
"""
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""
try:
  import matplotlib.pyplot as plt
except:
  raise
 
import networkx as nx
 
G=nx.Graph()
#添加带权边
G.add_edge('a','b',weight=0.6)
G.add_edge('a','c',weight=0.2)
G.add_edge('c','d',weight=0.1)
G.add_edge('c','e',weight=0.7)
G.add_edge('c','f',weight=0.9)
G.add_edge('a','d',weight=0.3)
#按权重划分为重权值得边和轻权值的边
elarge=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] >0.5]
esmall=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] <=0.5]
#节点位置
pos=nx.spring_layout(G) # positions for all nodes
#首先画出节点位置
# nodes
nx.draw_networkx_nodes(G,pos,node_size=700)
#根据权重,实线为权值大的边,虚线为权值小的边
# edges
nx.draw_networkx_edges(G,pos,edgelist=elarge,
          width=6)
nx.draw_networkx_edges(G,pos,edgelist=esmall,
          width=6,alpha=0.5,edge_color='b',style='dashed')
 
# labels标签定义
nx.draw_networkx_labels(G,pos,font_size=20,font_family='sans-serif')
 
plt.axis('off')
plt.savefig("weighted_graph.png") # save as png
plt.show() # display

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Jacobi迭代算法的Python实现详解

import numpy as np import time 1.1 Jacobi迭代算法 def Jacobi_tensor_V2(A,b,Delta,m,n,M): st...

Python+OpenCV人脸检测原理及示例详解

Python+OpenCV人脸检测原理及示例详解

关于opencv OpenCV 是 Intel 开源计算机视觉库 (Computer Version) 。它由一系列 C 函数和少量 C++ 类构成,实现了图像处理和计算机视觉方面的很...

利用python获得时间的实例说明

复制代码 代码如下:import time  print time.time()  print time.localtime(time.time())  p...

PySide和PyQt加载ui文件的两种方法

本文实例为大家分享了PySide和PyQt加载ui文件的具体实现代码,供大家参考,具体内容如下 在用PySide或PyQt的时候,经常用到要将画好的ui文件导入到代码里使用,下面是两种调...

解决Linux系统中python matplotlib画图的中文显示问题

最近想学习一些python数据分析的内容,就弄了个爬虫爬取了一些数据,并打算用Anaconda一套的工具(pandas, numpy, scipy, matplotlib, jupyte...