python networkx 根据图的权重画图实现

yipeiwu_com6年前Python基础

首先输入边和边的权重,随后画出节点位置,根据权重大小划分实边和虚边

#coding:utf-8
#!/usr/bin/env python
"""
An example using Graph as a weighted network.
"""
__author__ = """Aric Hagberg (hagberg@lanl.gov)"""
try:
  import matplotlib.pyplot as plt
except:
  raise
 
import networkx as nx
 
G=nx.Graph()
#添加带权边
G.add_edge('a','b',weight=0.6)
G.add_edge('a','c',weight=0.2)
G.add_edge('c','d',weight=0.1)
G.add_edge('c','e',weight=0.7)
G.add_edge('c','f',weight=0.9)
G.add_edge('a','d',weight=0.3)
#按权重划分为重权值得边和轻权值的边
elarge=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] >0.5]
esmall=[(u,v) for (u,v,d) in G.edges(data=True) if d['weight'] <=0.5]
#节点位置
pos=nx.spring_layout(G) # positions for all nodes
#首先画出节点位置
# nodes
nx.draw_networkx_nodes(G,pos,node_size=700)
#根据权重,实线为权值大的边,虚线为权值小的边
# edges
nx.draw_networkx_edges(G,pos,edgelist=elarge,
          width=6)
nx.draw_networkx_edges(G,pos,edgelist=esmall,
          width=6,alpha=0.5,edge_color='b',style='dashed')
 
# labels标签定义
nx.draw_networkx_labels(G,pos,font_size=20,font_family='sans-serif')
 
plt.axis('off')
plt.savefig("weighted_graph.png") # save as png
plt.show() # display

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3利用ctypes传入一个字符串类型的列表方法

c语言里:c_p.c #include <stdio.h> void get_str_list(int n, char *b[2]) { printf("in c s...

Python利用多进程将大量数据放入有限内存的教程

Python利用多进程将大量数据放入有限内存的教程

简介 这是一篇有关如何将大量的数据放入有限的内存中的简略教程。 与客户工作时,有时会发现他们的数据库实际上只是一个csv或Excel文件仓库,你只能将就着用,经常需要在不更新他们的数据仓...

Tensorflow实现酸奶销量预测分析

Tensorflow实现酸奶销量预测分析

本文实例为大家分享了Tensorflow酸奶销量预测分析的具体代码,供大家参考,具体内容如下 # coding:utf-8 # 酸奶成本为1元,利润为9元 # 预测少了相应的损失较大...

Python K最近邻从原理到实现的方法

Python K最近邻从原理到实现的方法

本来这篇文章是5月份写的,今天修改了一下内容,就成今天发表的了,CSDN这是出BUG了还是什么改规则了。。。 引文:决策树和基于规则的分类器都是积极学习方法(eager learner)...

对Python3之方法的覆盖与super函数详解

对Python3之方法的覆盖与super函数详解

#覆盖 覆盖:在继承关系中,子类实现了与基类同名的方法,在子类的实例调用该方法时,实例调用的是子类的覆盖版本。 通俗的讲,就是小明继承了他⑧的自行车,经过自己的改装,成了电动车,那么小明...