Python实现K折交叉验证法的方法步骤

yipeiwu_com6年前Python基础

学习器在测试集上的误差我们通常称作“泛化误差”。要想得到“泛化误差”首先得将数据集划分为训练集和测试集。那么怎么划分呢?常用的方法有两种,k折交叉验证法和自助法。介绍这两种方法的资料有很多。下面是k折交叉验证法的python实现。

##一个简单的2折交叉验证
from sklearn.model_selection import KFold
import numpy as np
X=np.array([[1,2],[3,4],[1,3],[3,5]])
Y=np.array([1,2,3,4])
KF=KFold(n_splits=2) #建立4折交叉验证方法 查一下KFold函数的参数
for train_index,test_index in KF.split(X):
  print("TRAIN:",train_index,"TEST:",test_index)
  X_train,X_test=X[train_index],X[test_index]
  Y_train,Y_test=Y[train_index],Y[test_index]
  print(X_train,X_test)
  print(Y_train,Y_test)
#小结:KFold这个包 划分k折交叉验证的时候,是以TEST集的顺序为主的,举例来说,如果划分4折交叉验证,那么TEST选取的顺序为[0].[1],[2],[3]。

#提升
import numpy as np
from sklearn.model_selection import KFold
#Sample=np.random.rand(50,15) #建立一个50行12列的随机数组
Sam=np.array(np.random.randn(1000)) #1000个随机数
New_sam=KFold(n_splits=5)
for train_index,test_index in New_sam.split(Sam): #对Sam数据建立5折交叉验证的划分
#for test_index,train_index in New_sam.split(Sam): #默认第一个参数是训练集,第二个参数是测试集
  #print(train_index,test_index)
  Sam_train,Sam_test=Sam[train_index],Sam[test_index]
  print('训练集数量:',Sam_train.shape,'测试集数量:',Sam_test.shape) #结果表明每次划分的数量


#Stratified k-fold 按照百分比划分数据
from sklearn.model_selection import StratifiedKFold
import numpy as np
m=np.array([[1,2],[3,5],[2,4],[5,7],[3,4],[2,7]])
n=np.array([0,0,0,1,1,1])
skf=StratifiedKFold(n_splits=3)
for train_index,test_index in skf.split(m,n):
  print("train",train_index,"test",test_index)
  x_train,x_test=m[train_index],m[test_index]
#Stratified k-fold 按照百分比划分数据
from sklearn.model_selection import StratifiedKFold
import numpy as np
y1=np.array(range(10))
y2=np.array(range(20,30))
y3=np.array(np.random.randn(10))
m=np.append(y1,y2) #生成1000个随机数
m1=np.append(m,y3)
n=[i//10 for i in range(30)] #生成25个重复数据

skf=StratifiedKFold(n_splits=5)
for train_index,test_index in skf.split(m1,n):
  print("train",train_index,"test",test_index)
  x_train,x_test=m1[train_index],m1[test_index]

Python中貌似没有自助法(Bootstrap)现成的包,可能是因为自助法原理不难,所以自主实现难度不大。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

windows下python 3.6.4安装配置图文教程

windows下python 3.6.4安装配置图文教程

windows下python的安装教程,供大家参考,具体内容如下 —–因为我是个真小白,网上的大多入门教程并不适合我这种超级超级小白,有时候还会遇到各种各样的问题,因此记录一下我的安装过...

python调用动态链接库的基本过程详解

python调用动态链接库的基本过程详解

动态链接库在Windows中为.dll文件,在linux中为.so文件。以linux平台为例说明python调用.so文件的使用方法。 本例中默认读者已经掌握动态链接库的生成方法,如果不...

基于Django的python验证码(实例讲解)

基于Django的python验证码(实例讲解)

验证码 在用户注册、登录页面,为了防止暴力请求,可以加入验证码功能,如果验证码错误,则不需要继续处理,可以减轻一些服务器的压力 使用验证码也是一种有效的防止crsf的方法 验证码效果如下...

利用python实现命令行有道词典的方法示例

利用python实现命令行有道词典的方法示例

前言 由于一直用Linux系统,对于词典的支持特别不好,对于我这英语渣渣的人来说,当看英文文档就一直卡壳,之前用惯了有道词典,感觉很不错,虽然有网页版的但是对于全站英文的网页来说并不支持...

用Python的Django框架完成视频处理任务的教程

Stickyworld 的网页应用已经支持视频拨放一段时间,但都是通过YouTube的嵌入模式实现。我们开始提供新的版本支持视频操作,可以让我们的用户不用受制于YouTube的服务。 我...