python多线程共享变量的使用和效率方法

yipeiwu_com6年前Python基础

python多线程可以使任务得到并发执行,但是有时候在执行多次任务的时候,变量出现“意外”。

import threading,time
n=0
start=time.time()
def b1(num):
 global n
 n=n+num
 n=n-num
def b2(num):
 for i in range(1000000):
 b1(num)
t1=threading.Thread(target=b2,args=(5,))
t2=threading.Thread(target=b2,args=(8,))
t1.start()
t2.start()
t1.join()
t2.join()
end=time.time()
print(n)
print(end-start)

执行结果:

18
0.7520430088043213

可见变量n从0变成了18,用时是0.75s,原因是计算机系统计算类似n=n+num是分两步计算的,先计算n+num的值放进内存中,然后再把计算的值赋值给n,正是这个间隙导致了变量出现“意外”。

这时候可以使用threading.Lock来把线程中的变量锁定,使用完再释放!

import threading,time
n=0
lock=threading.Lock()
start=time.time()
def b1(num):
 global n
 n=n+num
 n=n-num
def b2(num):
 for i in range(1000000):
  lock.acquire()#等待获取或获取修改变量的权限,并霸占它们
  b1(num)
  lock.release()#释放霸占的变量
t1=threading.Thread(target=b2,args=(5,))
t2=threading.Thread(target=b2,args=(8,))
t1.start()
t2.start()
t1.join()
t2.join()
end=time.time()
print(n)
print(end-start)

执行结果:

0
3.335190773010254

虽然变量的值正确了,但慢了很多倍,效率大大的打折扣,多线程的优势也没凸显出来。

所以尽量使用局部变量来代替全局变量在线程中使用,这样可以避免效率的问题。

以上这篇python多线程共享变量的使用和效率方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详解如何从TensorFlow的mnist数据集导出手写体数字图片

详解如何从TensorFlow的mnist数据集导出手写体数字图片

在TensorFlow的官方入门课程中,多次用到mnist数据集。 mnist数据集是一个数字手写体图片库,但它的存储格式并非常见的图片格式,所有的图片都集中保存在四个扩展名为idx3-...

Python2.7读取PDF文件的方法示例

本文实例讲述了Python2.7读取PDF文件的方法。分享给大家供大家参考,具体如下: 这篇文章示例代码采用的Python版本是2.7,需要下载的插件是PDFMiner,下载地址是htt...

Python3调用百度AI识别图片中的文字功能示例【测试可用】

Python3调用百度AI识别图片中的文字功能示例【测试可用】

本文实例讲述了Python3调用百度AI识别图片中的文字功能。分享给大家供大家参考,具体如下: 首先pip install命令安装baidu-aip模块,如下图所示(这里使用pip3 i...

pyqt5之将textBrowser的内容写入txt文档的方法

如下所示: try: StrText = self.textBrowser.toPlainText() qS = str(StrText)...

Pyhthon中使用compileall模块编译源文件为pyc文件

有的时候我们需要把项目中.py的python所有源文件编译成.pyc文件,只保留.pyc文件然后发布给别人(虽然说可以反编译,但也算是一种保护把). 这个时候就可以使用compileal...