python实现最小二乘法线性拟合

yipeiwu_com6年前Python基础

本文python代码实现的是最小二乘法线性拟合,并且包含自己造的轮子与别人造的轮子的结果比较。

问题:对直线附近的带有噪声的数据进行线性拟合,最终求出w,b的估计值。

最小二乘法基本思想是使得样本方差最小。

代码中self_func()函数为自定义拟合函数,skl_func()为调用scikit-learn中线性模块的函数。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
 
n = 101
 
x = np.linspace(0,10,n)
noise = np.random.randn(n)
y = 2.5 * x + 0.8 + 2.0 * noise
 
def self_func(steps=100, alpha=0.01):
  w = 0.5
  b = 0
  alpha = 0.01
  for i in range(steps):
    y_hat = w*x + b
    dy = 2.0*(y_hat - y)
    dw = dy*x
    db = dy
    w = w - alpha*np.sum(dw)/n
    b = b - alpha*np.sum(db)/n
    e = np.sum((y_hat-y)**2)/n
    #print (i,'W=',w,'\tb=',b,'\te=',e)
  print ('self_func:\tW =',w,'\n\tb =',b)
  plt.scatter(x,y)
  plt.plot(np.arange(0,10,1), w*np.arange(0,10,1) + b, color = 'r', marker = 'o', label = 'self_func(steps='+str(steps)+', alpha='+str(alpha)+')')
 
def skl_func():
  lr = LinearRegression()
  lr.fit(x.reshape(-1,1),y)
  y_hat = lr.predict(np.arange(0,10,0.75).reshape(-1,1))
  print('skl_fun:\tW = %f\n\tb = %f'%(lr.coef_,lr.intercept_))
  plt.plot(np.arange(0,10,0.75), y_hat, color = 'g', marker = 'x', label = 'skl_func')
  
self_func(10000)
skl_func()
plt.legend(loc='upper left')
plt.show()

结果:

self_func:  W = 2.5648753825503197     b = 0.24527830841237772
skl_fun:     W = 2.564875                             b = 0.245278

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现nao机器人身体躯干和腿部动作操作

本文实例为大家分享了python实现nao机器人身体躯干和腿部动作的具体代码,供大家参考,具体内容如下 跟上一篇类似,代码没什么难度,可以进行扩展。 #-*-encoding:UTF...

浅谈Python中的作用域规则和闭包

在对Python中的闭包进行简单分析之前,我们先了解一下Python中的作用域规则。关于Python中作用域的详细知识,有很多的博文都进行了介绍。这里我们先从一个简单的例子入手。 Pyt...

pandas数据筛选和csv操作的实现方法

1. 数据筛选 a b c 0 0 2 4 1 6 8 10 2 12 14 16 3 18 20 22 4 24 26 28 5 30 32 34 6 36 38 40 7 42...

python numpy之np.random的随机数函数使用介绍

np.random的随机数函数(1) 函数 说明 rand(d0,d1,..,dn)...

关于python字符串方法分类详解

关于python字符串方法分类详解

python字符串方法分类,字符串是经常可以看到的一个数据储存类型,我们要进行字符的数理,就需要用各种的方法,这里有许多方法,我给大家介绍比较常见的重要的方法,比如填充、删减、变形、分切...