python实现最小二乘法线性拟合

yipeiwu_com6年前Python基础

本文python代码实现的是最小二乘法线性拟合,并且包含自己造的轮子与别人造的轮子的结果比较。

问题:对直线附近的带有噪声的数据进行线性拟合,最终求出w,b的估计值。

最小二乘法基本思想是使得样本方差最小。

代码中self_func()函数为自定义拟合函数,skl_func()为调用scikit-learn中线性模块的函数。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
 
n = 101
 
x = np.linspace(0,10,n)
noise = np.random.randn(n)
y = 2.5 * x + 0.8 + 2.0 * noise
 
def self_func(steps=100, alpha=0.01):
  w = 0.5
  b = 0
  alpha = 0.01
  for i in range(steps):
    y_hat = w*x + b
    dy = 2.0*(y_hat - y)
    dw = dy*x
    db = dy
    w = w - alpha*np.sum(dw)/n
    b = b - alpha*np.sum(db)/n
    e = np.sum((y_hat-y)**2)/n
    #print (i,'W=',w,'\tb=',b,'\te=',e)
  print ('self_func:\tW =',w,'\n\tb =',b)
  plt.scatter(x,y)
  plt.plot(np.arange(0,10,1), w*np.arange(0,10,1) + b, color = 'r', marker = 'o', label = 'self_func(steps='+str(steps)+', alpha='+str(alpha)+')')
 
def skl_func():
  lr = LinearRegression()
  lr.fit(x.reshape(-1,1),y)
  y_hat = lr.predict(np.arange(0,10,0.75).reshape(-1,1))
  print('skl_fun:\tW = %f\n\tb = %f'%(lr.coef_,lr.intercept_))
  plt.plot(np.arange(0,10,0.75), y_hat, color = 'g', marker = 'x', label = 'skl_func')
  
self_func(10000)
skl_func()
plt.legend(loc='upper left')
plt.show()

结果:

self_func:  W = 2.5648753825503197     b = 0.24527830841237772
skl_fun:     W = 2.564875                             b = 0.245278

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python读取txt文件,去掉空格计算每行长度的方法

如下所示: # -*- coding: utf-8 -*- file2 = open("source.txt", 'r') file1 = open("target.txt",...

Python中使用SAX解析xml实例

SAX是一种基于事件驱动的API。利用SAX解析XML文档牵涉到两个部分:解析器和事件处理器。解析器负责读取XML文档,并向事件处理器发送事件,如元素开始跟元素结束事件;而事件处理器则负...

Python中几种属性访问的区别与用法详解

起步 在Python中,对于一个对象的属性访问,我们一般采用的是点(.)属性运算符进行操作。例如,有一个类实例对象foo,它有一个name属性,那便可以使用foo.name对此属性进行...

pow在python中的含义及用法

pow()方法返回xy(x的y次方) 的值 语法 以下是math模块pow()方法的语法: import math math.pow( x, y ) 内置的pow()方法 p...

Python的高阶函数用法实例分析

本文实例讲述了Python的高阶函数用法。分享给大家供大家参考,具体如下: 高阶函数 1.MapReduce MapReduce主要应用于分布式中。 大数据实际上是在15年下半年开始火起...