python实现最小二乘法线性拟合

yipeiwu_com6年前Python基础

本文python代码实现的是最小二乘法线性拟合,并且包含自己造的轮子与别人造的轮子的结果比较。

问题:对直线附近的带有噪声的数据进行线性拟合,最终求出w,b的估计值。

最小二乘法基本思想是使得样本方差最小。

代码中self_func()函数为自定义拟合函数,skl_func()为调用scikit-learn中线性模块的函数。

import numpy as np
import matplotlib.pyplot as plt
from sklearn.linear_model import LinearRegression
 
n = 101
 
x = np.linspace(0,10,n)
noise = np.random.randn(n)
y = 2.5 * x + 0.8 + 2.0 * noise
 
def self_func(steps=100, alpha=0.01):
  w = 0.5
  b = 0
  alpha = 0.01
  for i in range(steps):
    y_hat = w*x + b
    dy = 2.0*(y_hat - y)
    dw = dy*x
    db = dy
    w = w - alpha*np.sum(dw)/n
    b = b - alpha*np.sum(db)/n
    e = np.sum((y_hat-y)**2)/n
    #print (i,'W=',w,'\tb=',b,'\te=',e)
  print ('self_func:\tW =',w,'\n\tb =',b)
  plt.scatter(x,y)
  plt.plot(np.arange(0,10,1), w*np.arange(0,10,1) + b, color = 'r', marker = 'o', label = 'self_func(steps='+str(steps)+', alpha='+str(alpha)+')')
 
def skl_func():
  lr = LinearRegression()
  lr.fit(x.reshape(-1,1),y)
  y_hat = lr.predict(np.arange(0,10,0.75).reshape(-1,1))
  print('skl_fun:\tW = %f\n\tb = %f'%(lr.coef_,lr.intercept_))
  plt.plot(np.arange(0,10,0.75), y_hat, color = 'g', marker = 'x', label = 'skl_func')
  
self_func(10000)
skl_func()
plt.legend(loc='upper left')
plt.show()

结果:

self_func:  W = 2.5648753825503197     b = 0.24527830841237772
skl_fun:     W = 2.564875                             b = 0.245278

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

磁盘垃圾文件清理器python代码实现

磁盘垃圾文件清理器python代码实现

本文假设某些特定类型的文件和大小为0的文件为垃圾文件,可以自由扩展代码的列表,也就是垃圾文件的类型。 from os.path import isdir, join, splitex...

PyQt5实现简易计算器

PyQt5实现简易计算器

本文实例为大家分享了PyQt5实现简易计算器的具体代码,供大家参考,具体内容如下 效果图: 界面代码 calc_interface.py # -*- coding: utf-8...

opencv设置采集视频分辨率方式

如下所示: #include <opencv2\opencv.hpp> #include<ctime> using namespace cv; usi...

浅谈python脚本设置运行参数的方法

浅谈python脚本设置运行参数的方法

正在学习Django框架,在运行manage.py的时候需要给它设置要监听的端口,就是给这个脚本一个运行参数。教学视频中,是在Eclipse中设置的运行参数,网上Django大部分都是在...

python binascii 进制转换实例

如下所示: #coding:utf-8 import binascii a = 'worker' #先把worker转换成二进制数据然后在用十六进制表示 b = binasc...