Python 画出来六维图

yipeiwu_com5年前Python基础


来自维基百科

我们的大脑通常最多能感知三维空间,超过三维就很难想象了。尽管是三维,理解起来也很费劲,所以大多数情况下都使用二维平面。

不过,我们仍然可以绘制出多维空间,今天就来用 Python 的 plotly 库绘制下三维到六维的图,看看长什么样。

数据我们使用一份来自 UCI 的真实汽车数据集,该数据集包括 205 个样本和 26 个特征,从中选择 6 个特征来绘制图形:

基础工作

安装好 plotly 包:

pip install plotly

加载数据集(文末会提供):

import pandas as pd 
data = pd.read_csv("cars.csv")

下面我们先绘制基础的二维图表,使用两个 RPM 和 Speed 两个特征即可:

绘制 2-D 图

代码实现如下:

import plotly 
import plotly.graph_objs as go 
 
#绘制散点图 
fig1 = go.Scatter(x=data['curb-weight'], 
         y=data['price'], 
         mode='markers') 
 
#绘制布局 
mylayout = go.Layout(xaxis=dict(title="curb-weight"), 
           yaxis=dict( title="price")) 
 
#绘图 html 
plotly.offline.plot({"data": [fig1], 
           "layout": mylayout}, 
           auto_open=True)

保存为 html 文件打开可以生成交互界面,也可以保存为 png 图片。

下面增加特征来绘制三维图。

绘制 3-D 图

可以使用 plotly 的 plot.Scatter3D 方法绘制三维图:

代码实现如下:

fig1 = go.Scatter3d(x=data['curb-weight'], 
          y=data['horsepower'], 
          z=data['price'], 
          marker=dict(opacity=0.9, 
                reversescale=True, 
                colorscale='Blues', 
                size=5), 
          line=dict (width=0.02), 
          mode='markers') 
 
mylayout = go.Layout(scene=dict(xaxis=dict( title="curb-weight"), 
                yaxis=dict( title="horsepower"), 
                zaxis=dict(title="price")),) 
 
plotly.offline.plot({"data": [fig1], 
           "layout": mylayout}, 
           auto_open=True, 
           filename=("3DPlot.html"))

如何绘制更高维度的图呢?显然无法通过扩展坐标轴的形式,不过有个小技巧就是制造一个虚拟维度,可以用不同颜色、形状大小、形状类别来入手。这样就可以显示第四个维度了。

绘制 4-D 图

下面我们将第四个变量——车辆油耗(city-mpg)添加到原先的三维图中,用颜色深浅表示,这样就绘制出了四维图。可以看到当其他三个指标(马力、车身重量、车价格)越高时:车辆油耗是越少的。

绘制 5-D 图

基于这样的思想,我们还可以通过修改圆形大小再增加一个维度——发动机尺寸(engine-size)变成五维图:

我们仍然可以比较容易地地发现:车越贵,发动机尺寸越大这样的规律。

绘制 6-D 图

接着还可以通过更改形状的方式增加第六个维度——车门数,圆形表示四车门,方形表示两车门。通常两个车门的都是昂贵的豪华跑车,在图中也可以看出方形主要集中在价格比较高的区域。

这样我们就从普通的二维图扩展到了高维图,当然还可以继续拓展,不过分辨起来会越来越困难。

源码下载地址

原文链接:

https://medium.com/@prasadostwal/multi-dimension-plots-in-python-from-2d-to-6d-9a2bf7b8cc74

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python3如何将docx转换成pdf文件

本文实例为大家分享了python3将docx转换成pdf文件的具体代码,供大家参考,具体内容如下 直接上代码 # -*- encoding:utf-8 -*- """ auth...

python数据类型判断type与isinstance的区别实例解析

在项目中,我们会在每个接口验证客户端传过来的参数类型,如果验证不通过,返回给客户端“参数错误”错误码。 这样做不但便于调试,而且增加健壮性。因为客户端是可以作弊的,不要轻易相信客户端传过...

Python3读取文件常用方法实例分析

本文实例讲述了Python3读取文件常用方法。分享给大家供大家参考。具体如下: ''''' Created on Dec 17, 2012 读取文件 @author: liur...

使用python list 查找所有匹配元素的位置实例

如下所示: import re word = "test" s = "test abcdas test 1234 testcase testsuite" w = [m.start...

Python Web框架Flask中使用七牛云存储实例

对于小型站点,使用七牛云存储的免费配额已足够为站点提供稳定、快速的存储服务 七牛云存储已有Python SDK,对它进行简单封装后,就可以直接在Flask中使用了,项目代码见GitHub...