python 标准差计算的实现(std)

yipeiwu_com6年前Python基础

numpy.std() 求标准差的时候默认是除以 n 的,即是有偏的,np.std无偏样本标准差方式为加入参数 ddof = 1;

pandas.std() 默认是除以n-1 的,即是无偏的,如果想和numpy.std() 一样有偏,需要加上参数ddof=0 ,即pandas.std(ddof=0) ;DataFrame的describe()中就包含有std();

demo:

>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.std(a, ddof = 1)
3.0276503540974917
>>> np.sqrt(((a - np.mean(a)) ** 2).sum() / (a.size - 1))
3.0276503540974917
>>> np.sqrt(( a.var() * a.size) / (a.size - 1))
3.0276503540974917

PS:numpy中标准差std的神坑

我们用Matlab作为对比。计算标准差,得到:

>> std([1,2,3])
ans =
   1

然而在numpy中:

>>> np.std([1,2,3])
0.81649658092772603

什么鬼!这么简单的都能出错?原因在于,np.std有这么一个参数:

ddof : int, optional
Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero.

因此,想要正确调用,必须使ddof=1:

>>> np.std([1,2,3], ddof=1)
1.0

而且,这一特性还影响到了许多基于numpy的包。比如scikit-learn里的StandardScaler。想要正确调用,只能自己手动设置参数:

ss = StandardScaler()
ss.mean_ = np.mean(X, axis=0)
ss.scale_ = np.std(X, axis=0, ddof=1)
X_norm = ss.transform(X)

当X数据量较大时无所谓,当X数据量较小时则要尤为注意。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django模型修改及数据迁移实现解析

Migrations Django中对Model进行修改是件麻烦的事情,syncdb命令仅仅创建数据库里还没有的表,它并不对已存在的数据表进行同步修改,也不处理数据模型的删除。 如果你...

Python中read()、readline()和readlines()三者间的区别和用法

前言 众所周知在python中读取文件常用的三种方法:read(),readline(),readlines(),今天看项目是又忘记他们的区别了。以前看书的时候觉得这东西很简单,一眼扫过...

PyCharm+Qt Designer+PyUIC安装配置教程详解

PyCharm+Qt Designer+PyUIC安装配置教程详解

Qt Designer用于像VC++的MFC一样拖放、设计控件 PyUIC用于将Qt Designer生成的.ui文件转换成.py文件 Qt Designer和PyUIC都包含在PyQt...

python批量修改文件名的实现代码

#coding:utf-8 #批量修改文件名 import os import re import datetime re_st = r'(\d+)\+\s?\((...

Python实现计算文件MD5和SHA1的方法示例

本文实例讲述了Python实现计算文件MD5和SHA1的方法。分享给大家供大家参考,具体如下: 不多说,直接源码: #file md5 import sys; import hash...