python 标准差计算的实现(std)

yipeiwu_com6年前Python基础

numpy.std() 求标准差的时候默认是除以 n 的,即是有偏的,np.std无偏样本标准差方式为加入参数 ddof = 1;

pandas.std() 默认是除以n-1 的,即是无偏的,如果想和numpy.std() 一样有偏,需要加上参数ddof=0 ,即pandas.std(ddof=0) ;DataFrame的describe()中就包含有std();

demo:

>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.std(a, ddof = 1)
3.0276503540974917
>>> np.sqrt(((a - np.mean(a)) ** 2).sum() / (a.size - 1))
3.0276503540974917
>>> np.sqrt(( a.var() * a.size) / (a.size - 1))
3.0276503540974917

PS:numpy中标准差std的神坑

我们用Matlab作为对比。计算标准差,得到:

>> std([1,2,3])
ans =
   1

然而在numpy中:

>>> np.std([1,2,3])
0.81649658092772603

什么鬼!这么简单的都能出错?原因在于,np.std有这么一个参数:

ddof : int, optional
Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero.

因此,想要正确调用,必须使ddof=1:

>>> np.std([1,2,3], ddof=1)
1.0

而且,这一特性还影响到了许多基于numpy的包。比如scikit-learn里的StandardScaler。想要正确调用,只能自己手动设置参数:

ss = StandardScaler()
ss.mean_ = np.mean(X, axis=0)
ss.scale_ = np.std(X, axis=0, ddof=1)
X_norm = ss.transform(X)

当X数据量较大时无所谓,当X数据量较小时则要尤为注意。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python+threading模块对单个接口进行并发测试

Python+threading模块对单个接口进行并发测试

本文实例为大家分享了Python threading模块对单个接口进行并发测试的具体代码,供大家参考,具体内容如下 本文知识点 通过在threading.Thread继承类中重写run(...

python画图——实现在图上标注上具体数值的方法

python画图——实现在图上标注上具体数值的方法

比如当前的表格数据是 df['resultRate'].plot(style='-.bo') plt.grid(axis='y') #设置数字标签** for a,b in zi...

Python创建对称矩阵的方法示例【基于numpy模块】

Python创建对称矩阵的方法示例【基于numpy模块】

本文实例讲述了Python创建对称矩阵的方法。分享给大家供大家参考,具体如下: 对称(实对称)矩阵也即: step 1:创建一个方阵 >>> import nump...

Python3 模块、包调用&路径详解

如下所示: ''' 以下代码均为讲解,不能实际操作 ''' ''' 博客园 Infi_chu ''' ''' 模块的优点: 1.高可维护性 2.可以大大减少编写的代码量 模块一共有...

Python字符串格式化的方法(两种)

本文介绍了Python字符串格式化,主要有两种方法,分享给大家,具体如下 用于字符串的拼接,性能更优。 字符串格式化有两种方式:百分号方式、format方式。 百分号方式比较老,而for...