python 标准差计算的实现(std)

yipeiwu_com5年前Python基础

numpy.std() 求标准差的时候默认是除以 n 的,即是有偏的,np.std无偏样本标准差方式为加入参数 ddof = 1;

pandas.std() 默认是除以n-1 的,即是无偏的,如果想和numpy.std() 一样有偏,需要加上参数ddof=0 ,即pandas.std(ddof=0) ;DataFrame的describe()中就包含有std();

demo:

>>> a
array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])
>>> np.std(a, ddof = 1)
3.0276503540974917
>>> np.sqrt(((a - np.mean(a)) ** 2).sum() / (a.size - 1))
3.0276503540974917
>>> np.sqrt(( a.var() * a.size) / (a.size - 1))
3.0276503540974917

PS:numpy中标准差std的神坑

我们用Matlab作为对比。计算标准差,得到:

>> std([1,2,3])
ans =
   1

然而在numpy中:

>>> np.std([1,2,3])
0.81649658092772603

什么鬼!这么简单的都能出错?原因在于,np.std有这么一个参数:

ddof : int, optional
Means Delta Degrees of Freedom. The divisor used in calculations is N - ddof, where N represents the number of elements. By default ddof is zero.

因此,想要正确调用,必须使ddof=1:

>>> np.std([1,2,3], ddof=1)
1.0

而且,这一特性还影响到了许多基于numpy的包。比如scikit-learn里的StandardScaler。想要正确调用,只能自己手动设置参数:

ss = StandardScaler()
ss.mean_ = np.mean(X, axis=0)
ss.scale_ = np.std(X, axis=0, ddof=1)
X_norm = ss.transform(X)

当X数据量较大时无所谓,当X数据量较小时则要尤为注意。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Java Web开发过程中登陆模块的验证码的实现方式总结

Java Web开发过程中登陆模块的验证码的实现方式总结

验证码及它的作用 验证码为全自动区分计算机和人类的图灵测试的缩写,是一种区分用户是计算机的公共全自动程序,这个问题可以由计算机生成并评判,但是必须只有人类才能解答.可以防止恶意破解密码、...

python中的迭代和可迭代对象代码示例

什么是迭代(iteration)呢? 给定一个list或者tuple,通过for循环来遍历这个list或者tuple、这种遍历就是迭代(iteration)。只要是可迭代的对象都可以进行...

Selenium 模拟浏览器动态加载页面的实现方法

相信爬取大公司的数据时,常常会遇到页面信息动态加载的问题, 如果仅仅使用content = urllib2.urlopen(URL).read(),估计信息是获取不全的,这时候就需要模拟...

基于DATAFRAME中元素的读取与修改方法

DATAFRAME中使用iat[1,0]和iloc[0,1]对元素进行修改。 a = [("hahaha",1),("lalala",2),("cacaca",6)] b = pad...

win8下python3.4安装和环境配置图文教程

win8下python3.4安装和环境配置图文教程

win8下python安装和环境配置,具体内容如下 python语法较C语言简单,容易上手。 具体步骤 1.本文采用的是win8.1 64位系统,安装python3.4。 2.先在py...