详解python pandas 分组统计的方法

yipeiwu_com6年前Python基础

首先,看看本文所面向的应用场景:我们有一个数据集df,现在想统计数据中某一列每个元素的出现次数。这个在我们前面文章《如何画直方图》中已经介绍了方法,利用value_counts()就可以实现(具体回看文章)

但是,现在,我们考虑另外一个场景,我们假如要想统计其中两列元素出现次数呢?举个栗子:


在df数据集中,如果我们想统计A、B两列的元素的出现情况,也就是说,得到如下表。


从上面的最后一列可以看到,在A、B两列中,1 2 出现了2次,1 4 出现1次 ,1 6出现1次,2 3出现了2次, 2 4 出现1次, 3 1出现了1次

具体实现的代码:

import pandas as pd
df=pd.DataFrame([[1,2,2],[1,4,5],[1,2,4],[1,6,3],[2,3,1],[2,4,1],[2,3,5],[3,1,1]],columns=['A','B','C'])
gp=df.groupby(by=['A','B'])
gp.size()

所以,如果想统计更多列,只要在groupby()中的by参数添加就可以,例如统计3列。

gp=df.groupby(by=['A','B','C'])

由gp.size()得到的是可以mulitiindex Series。

下面,要转化成DataFrame的结构。

newdf=gp.size()
newdf.reset_index(name='times')

其中name中参数就是我们可以为最后一列添加新的名字,例如这里的“times”

这个时候newdf已经是DataFrame的类型了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python ubplot使用方法解析

python ubplot使用方法解析

这篇文章主要介绍了python ubplot使用方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 matlab中subplot(...

python中的五种异常处理机制介绍

从几年前开始学习编程直到现在,一直对程序中的异常处理怀有恐惧和排斥心理。之所以这样,是因为不了解。这次攻python,首先把自己最畏惧和最不熟悉的几块内容列出来,里面就有「异常处理」这一...

python实现最长公共子序列

python实现最长公共子序列

最长公共子序列python实现,最长公共子序列是动态规划基本题目,下面按照动态规划基本步骤解出来。 1.找出最优解的性质,并刻划其结构特征 序列a共有m个元素,序列b共有n个元素,如果a...

下载糗事百科的内容_python版

复制代码 代码如下:#coding:utf-8 import urllib.request import xml.dom.minidom import sqlite3 import th...

python opencv之SURF算法示例

python opencv之SURF算法示例

本文介绍了python opencv之SURF算法示例,分享给大家,具体如下: 目标: SURF算法基础 opencv总SURF算法的使用 原理: 上节课使用了SIFT算法,...