详解python pandas 分组统计的方法

yipeiwu_com6年前Python基础

首先,看看本文所面向的应用场景:我们有一个数据集df,现在想统计数据中某一列每个元素的出现次数。这个在我们前面文章《如何画直方图》中已经介绍了方法,利用value_counts()就可以实现(具体回看文章)

但是,现在,我们考虑另外一个场景,我们假如要想统计其中两列元素出现次数呢?举个栗子:


在df数据集中,如果我们想统计A、B两列的元素的出现情况,也就是说,得到如下表。


从上面的最后一列可以看到,在A、B两列中,1 2 出现了2次,1 4 出现1次 ,1 6出现1次,2 3出现了2次, 2 4 出现1次, 3 1出现了1次

具体实现的代码:

import pandas as pd
df=pd.DataFrame([[1,2,2],[1,4,5],[1,2,4],[1,6,3],[2,3,1],[2,4,1],[2,3,5],[3,1,1]],columns=['A','B','C'])
gp=df.groupby(by=['A','B'])
gp.size()

所以,如果想统计更多列,只要在groupby()中的by参数添加就可以,例如统计3列。

gp=df.groupby(by=['A','B','C'])

由gp.size()得到的是可以mulitiindex Series。

下面,要转化成DataFrame的结构。

newdf=gp.size()
newdf.reset_index(name='times')

其中name中参数就是我们可以为最后一列添加新的名字,例如这里的“times”

这个时候newdf已经是DataFrame的类型了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python MySQLdb模块连接操作mysql数据库实例

mysql是一个优秀的开源数据库,它现在的应用非常的广泛,因此很有必要简单的介绍一下用python操作mysql数据库的方法。python操作数据库需要安装一个第三方的模块,在http:...

JSONLINT:python的json数据验证库实例解析

JSON(JavaScript Object Notation) 是一种轻量级的数据交换格式,易于人阅读和编写。 JSON 函数 使用 JSON 函数需要导入 json 库:import...

Python常用知识点汇总

Python常用知识点汇总

1、Set基本数据类型 a、set集合,是一个无序且不重复的元素集合 class set(object): """ set() -> new empty set ob...

Python的Flask框架中Flask-Admin库的简单入门指引

Python的Flask框架中Flask-Admin库的简单入门指引

 Flask-Admin是一个功能齐全、简单易用的Flask扩展,让你可以为Flask应用程序增加管理界面。它受django-admin包的影响,但用这样一种方式实现,开发者拥...

Python挑选文件夹里宽大于300图片的方法

本文实例讲述了Python挑选文件夹里宽大于300图片的方法。分享给大家供大家参考。具体分析如下: 这段代码需要用到PIL库。代码如下所示: import sys import os...