numpy.meshgrid()理解(小结)

yipeiwu_com6年前Python基础

本文的目的是记录meshgrid()的理解过程:

step1. 通过一个示例引入创建网格点矩阵;

step2. 基于步骤1,说明meshgrid()的作用;

step3. 详细解读meshgrid()的官网定义;

说明:step1和2 的数据都是基于笛卡尔坐标系的矩阵,目的是为了方便讨论。

step1. 通过一个示例引入创建网格点矩阵;

示例1,创建一个2行3列的网格点矩阵。

#!/usr/bin/env python3
#-*- coding:utf-8 -*-
############################
#File Name: meshgrid1.py
#Brief:
#Author: frank
#Mail: frank0903@aliyun.com
#Created Time:2018-06-14 21:33:14
############################
import numpy as np
import matplotlib.pyplot as plt

X = np.array([[0, 0.5, 1],[0, 0.5, 1]])
print("X的维度:{},shape:{}".format(X.ndim, X.shape))
Y = np.array([[0, 0, 0],[1, 1, 1]])
print("Y的维度:{},shape:{}".format(Y.ndim, Y.shape))

plt.plot(X, Y, 'o--')
plt.grid(True)
plt.show()

X矩阵是:[[0. 0.5 1. ],[0. 0.5 1. ]]

Y矩阵是:[[0 0 0],[1 1 1]]

step2. meshgrid()的作用;

当要描绘的 矩阵网格点的数据量小的时候,可以用上述方法构造网格点坐标数据;

但是如果是一个(256, 100)的整数矩阵网格,要怎样构造数据呢?

方法1:将x轴上的100个整数点组成的行向量,重复256次,构成shape(256,100)的X矩阵;将y轴上的256个整数点组成列向量,重复100次构成shape(256,100)的Y矩阵

显然方法1的数据构造过程很繁琐,也不方便调用,那么有没有更好的办法呢?of course!!!

那么meshgrid()就显示出它的作用了

使用meshgrid方法,你只需要构造一个表示x轴上的坐标的向量和一个表示y轴上的坐标的向量;然后作为参数给到meshgrid(),该函数就会返回相应维度的两个矩阵;

例如,你想构造一个2行3列的矩阵网格点,那么x生成一个shape(3,)的向量,y生成一个shape(2,)的向量,将x,y传入meshgrid(),最后返回的X,Y矩阵的shape(2,3)

示例2,使用meshgrid()生成step1中的网格点矩阵

x = np.array([0, 0.5, 1])
y = np.array([0,1])

xv,yv = np.meshgrid(x, y)
print("xv的维度:{},shape:{}".format(xv.ndim, xv.shape))
print("yv的维度:{},shape:{}".format(yv.ndim, yv.shape))

plt.plot(xv, yv, 'o--')
plt.grid(True)
plt.show()

示例3,生成一个20行30列的网格点矩阵

x = np.linspace(0,500,30)
print("x的维度:{},shape:{}".format(x.ndim, x.shape))
print(x)
y = np.linspace(0,500,20)
print("y的维度:{},shape:{}".format(y.ndim, y.shape))
print(y)

xv,yv = np.meshgrid(x, y)
print("xv的维度:{},shape:{}".format(xv.ndim, xv.shape))
print("yv的维度:{},shape:{}".format(yv.ndim, yv.shape))

plt.plot(xv, yv, '.')
plt.grid(True)
plt.show()

step3. 详细解读meshgrid()的官网定义;

numpy.meshgrid(*xi, **kwargs)

Return coordinate matrices from coordinate vectors.

根据输入的坐标向量生成对应的坐标矩阵

Parameters:
  x1, x2,…, xn : array_like
    1-D arrays representing the coordinates of a grid.
  indexing : {‘xy', ‘ij'}, optional
    Cartesian (‘xy', default) or matrix (‘ij') indexing of output. See Notes for more details.
  sparse : bool, optional
    If True a sparse grid is returned in order to conserve memory. Default is False.
  copy : bool, optional
    If False, a view into the original arrays are returned in order to conserve memory.
    Default is True. Please note that sparse=False, copy=False will likely return non-contiguous arrays.
    Furthermore, more than one element of a broadcast array may refer to a single memory location.
    If you need to write to the arrays, make copies first.
Returns:
  X1, X2,…, XN : ndarray
    For vectors x1, x2,…, ‘xn' with lengths Ni=len(xi) ,
    return (N1, N2, N3,...Nn) shaped arrays if indexing='ij'
    or (N2, N1, N3,...Nn) shaped arrays if indexing='xy'
    with the elements of xi repeated to fill the matrix along the first dimension for x1, the second for x2 and so on.

针对indexing参数的说明:

indexing只是影响meshgrid()函数返回的矩阵的表示形式,但并不影响坐标点

x = np.array([0, 0.5, 1])
y = np.array([0,1])

xv,yv = np.meshgrid(x, y)
print("xv的维度:{},shape:{}".format(xv.ndim, xv.shape))
print("yv的维度:{},shape:{}".format(yv.ndim, yv.shape))
print(xv)
print(yv)

plt.plot(xv, yv, 'o--')
plt.grid(True)
plt.show()

x = np.array([0, 0.5, 1])
y = np.array([0,1])

xv,yv = np.meshgrid(x, y,indexing='ij')
print("xv的维度:{},shape:{}".format(xv.ndim, xv.shape))
print("yv的维度:{},shape:{}".format(yv.ndim, yv.shape))
print(xv)
print(yv)

plt.plot(xv, yv, 'o--')
plt.grid(True)
plt.show()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

在pycharm中python切换解释器失败的解决方法

在pycharm中python切换解释器失败的解决方法

在pycharm中我们有时需要切换python的版本,这里需要注意的是我们是在PyCharm中的Preferences中切换的, 在File的Setting中切换可能会导致失败 以上...

Python cx_freeze打包工具处理问题思路及解决办法

以下是在使用cx_freeze过程中遇到的问题及解决办法(Win7) 1.问题描述:运行exe,启动无数个主程序,导致系统无法使用     原因:在程序中使用了multiprocess...

python下实现二叉堆以及堆排序的示例

堆是一种特殊的树形结构, 堆中的数据存储满足一定的堆序。堆排序是一种选择排序, 其算法复杂度, 时间复杂度相对于其他的排序算法都有很大的优势。 堆分为大头堆和小头堆, 正如其名, 大头堆...

python的range和linspace使用详解

在python中要产生一个数字序列,最快的方法就是使用range和linspace函数,但是这两者不太一样,但总的来说实现的效果是一致的,都能获取一个数字序列。 range range一...

Pytorch中的variable, tensor与numpy相互转化的方法

Pytorch中的variable, tensor与numpy相互转化的方法

在使用pytorch作为深度学习的框架时,经常会遇到变量variable、张量tensor与矩阵numpy的类型的相互转化的问题,本章结合这实际图像对此转化方法进行实现。 1.加载需要用...