pandas DataFrame行或列的删除方法的实现示例

yipeiwu_com5年前Python基础

此文我们继续围绕DataFrame介绍相关操作。

平时在用DataFrame时候,删除操作用的不太多,基本是从源DataFrame中筛选数据,组成一个新的DataFrame再继续操作。

1. 删除DataFrame某一列

这里我们继续用上一节产生的DataFrame来做例子,原DataFrame如下:

我们使用drop()函数,此函数有一个列表形参labels,写的时候可以加上labels=[xxx],也可以不加,列表内罗列要删除行或者列的名称,默认是行名称,如果要删除列,则要增加参数axis=1,操作如下:

#pd.__version__ =='0.18.0'
#drop columns
test_dict_df.drop(['id'],axis=1)
#test_dict_df.drop(columns=['id']) # official operation, maybe my pandas version needs update!

结果如下,对于上面的代码,官方教程文档中给出了columns=['name'],但是在我测试的时候会报错,我用的python3,pandas版本为0.18,可能是pandas版本太老的缘故。

这里注意输出的结果是执行此方法的结果,而不是输出test_dict_df的结果,是因为方法默认的并不是在本身执行操作,这时候输出test_dict_df输出的仍然是没有进行删除操作的原DataFrame,如果你想在原DataFrame上进行操作,需要加上inplace=True,等价于在操作完再赋值给本身:

test_dict_df.drop(['id'],axis=1,inplace=True)
# test_dict_df = test_dict_df.drop(['id'],axis=1)

2. 删除DataFrame某一行

删除某一行,在上面删除列操作的时候也稍有提及,如果不加axis=1,则默认按照行号进行删除,例如要删除第0行和第4行:

test_dict_df.drop([0,4])

同理,你要在源DataFrame上进行操作就得加上inplace参数,否则不会在test_dict_df上改动。

当然,如果你的DataFrame有很多级,你可以加上level参数,这里就不多赘述了。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python实现Linux监控的方法

工作原理:基于/proc 文件系统 Linux 系统为管理员提供了非常好的方法,使其可以在系统运行时更改内核,而不需要重新引导内核系统,这是通过/proc 虚拟文件系统实现的。/proc...

python实现决策树分类

python实现决策树分类

上一篇博客主要介绍了决策树的原理,这篇主要介绍他的实现,代码环境python 3.4,实现的是ID3算法,首先为了后面matplotlib的绘图方便,我把原来的中文数据集变成了英文。 原...

python并发编程 Process对象的其他属性方法join方法详解

一 Process对象的join方法 在主进程运行过程中如果想并发地执行其他的任务,我们可以开启子进程,此时主进程的任务与子进程的任务分两种情况 情况一: 在主进程的任务与子进程的任...

Python实现的下载8000首儿歌的代码分享

下载8000首儿歌的python的代码: 复制代码 代码如下: #-*- coding: UTF-8 -*- from pyquery import PyQuery as py from...

简单谈谈Python中函数的可变参数

前言 在Python中定义函数,可以用必选参数、默认参数、可变参数和关键字参数,这4种参数都可以一起使用,或者只用其中某些,但是请注意,参数定义的顺序必须是:必选参数、默认参数、可变参...