Python 利用高德地图api实现经纬度与地址的批量转换

yipeiwu_com6年前Python基础

我们都知道,可以使用高德地图api实现经纬度与地址的转换。那么,当我们有很多个地址与经纬度,需要批量转换的时候,应该怎么办呢?

在这里,选用高德Web服务的API,其中的地址/逆地址编码,可以实现经纬度与地址的转换。

高德API地址:

地理/逆地理编码:http://lbs.amap.com/api/webservice/guide/api/georegeo

坐标转换:http://lbs.amap.com/api/webservice/guide/api/convert

1.申请key

2.坐标转换

坐标转换是一类简单的HTTP接口,能够将用户输入的非高德坐标(GPS坐标、mapbar坐标、baidu坐标)转换成高德坐标。

def transform(location):
 parameters = {'coordsys':'gps','locations': location, 'key': '7ec25a9c6716bb26f0d25e9fdfa012b8'}
    base = 'http://restapi.amap.com/v3/assistant/coordinate/convert'
    response = requests.get(base, parameters)
    answer = response.json()
    return answer['locations']

2.地理/逆地理编码

我这里是将经纬度转换为地址,所以选用的是逆地理编码的接口。

def geocode(location):
    parameters = {'location': location, 'key': '7ec25a9c6716bb26f0d25e9fdfa012b8'}
    base = 'http://restapi.amap.com/v3/geocode/regeo'
    response = requests.get(base, parameters)
    answer = response.json()
    return answer['regeocode']['addressComponent']['district'].encode('gbk','replace'),answer['regeocode']['formatted_address'].encode('gbk','replace')

3.从文件中读取

需要批量获取的话,一般是从文件中读取数据,读取代码如下:

def parse():
 datas = []
 totalListData = pd.read_csv('locs.csv')
 totalListDict = totalListData.to_dict('index')
 for i in range(0, len(totalListDict)):
 datas.append(str(totalListDict[i]['centroidx']) + ',' + str(totalListDict[i]['centroidy']))
 return datas

4.完整代码

对于批量获取,我一开始也走了很多弯路。一开始选用javascript接口,但是js接口的函数是异步返回,所以可能第10行的结果跑到第15行去了,一直没有很好的解决,后来才选用web接口。最后,将完整代码贴于此,仅供参考。

#!/usr/bin/env
#-*- coding:utf-8 -*-
'''
利用高德地图api实现经纬度与地址的批量转换
'''
import requests
import pandas as pd
import time
import sys
reload(sys)
sys.setdefaultencoding("utf-8")
 
def parse():
 datas = []
 totalListData = pd.read_csv('locs.csv')
 totalListDict = totalListData.to_dict('index')
 for i in range(0, len(totalListDict)):
 datas.append(str(totalListDict[i]['centroidx']) + ',' + str(totalListDict[i]['centroidy']))
 return datas
 
def transform(location):
 parameters = {'coordsys':'gps','locations': location, 'key': '7ec25a9c6716bb26f0d25e9fdfa012b8'}
    base = 'http://restapi.amap.com/v3/assistant/coordinate/convert'
    response = requests.get(base, parameters)
    answer = response.json()
    return answer['locations']
 
def geocode(location):
    parameters = {'location': location, 'key': '7ec25a9c6716bb26f0d25e9fdfa012b8'}
    base = 'http://restapi.amap.com/v3/geocode/regeo'
    response = requests.get(base, parameters)
    answer = response.json()
    return answer['regeocode']['addressComponent']['district'].encode('gbk','replace'),answer['regeocode']['formatted_address'].encode('gbk','replace')
 
if __name__=='__main__':
 i = 0
 count = 0
 df = pd.DataFrame(columns=['location','detail'])
 #locations = parse(item)
 locations = parse()
 for location in locations:
 dist, detail = geocode(transform(location))
 df.loc[i] = [dist, detail]
 i = i + 1
 df.to_csv('locdetail.csv', index =False)

注意事项:

在测试的时候,一个key差不多可以下载2000-3000条数据,一个账号可以申请4个key。这是我自己的使用情况。所以,测试的时候,不用测试过多,直接开始正式爬数据才是正道。

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

VSCode下配置python调试运行环境的方法

VSCode下配置python调试运行环境的方法

VSCode配置python调试环境 很久之前的一个东东,翻出来看看 VSCode配置python调试环境 * 1.下载python解释器 * 2.在V...

python获取Linux发行版名称

我必须从Python脚本中获取Linux发行版名称。dist平台模块中有一个方法: import platform platform.dist() 但在我的Arch Linux下...

Python用61行代码实现图片像素化的示例代码

Python用61行代码实现图片像素化的示例代码

起因 看到网上的像素图片,感觉蛮有趣的,就打算用python一些PIL类库写一个。 实现思路 把一张图片分成多个块,每个块的颜色都等于这个色块中颜色最多的颜色,如下图。 这个图...

Python 实现王者荣耀中的敏感词过滤示例

王者荣耀的火爆就不用说了,但是一局中总会有那么几个挂机的,总能看到有些人在骂人,我们发现,当你输入一些常见的辱骂性词汇时,系统会自动将该词变成“*”,作为python初学者,就想用pyt...

django项目登录中使用图片验证码的实现方法

django项目登录中使用图片验证码的实现方法

应用下创建untils文件夹放置封装图片验证码的函数 创建validCode.py文件定义验证码规则 import random def get_random_color():...