pytorch神经网络之卷积层与全连接层参数的设置方法

yipeiwu_com6年前Python基础

当使用pytorch写网络结构的时候,本人发现在卷积层与第一个全连接层的全连接层的input_features不知道该写多少?一开始本人的做法是对着pytorch官网的公式推,但是总是算错。

后来发现,写完卷积层后可以根据模拟神经网络的前向传播得出这个。

全连接层的input_features是多少。首先来看一下这个简单的网络。这个卷积的Sequential本人就不再啰嗦了,现在看nn.Linear(???, 4096)这个全连接层的第一个参数该为多少呢?

请看下文详解。

class AlexNet(nn.Module):
  def __init__(self):
    super(AlexNet, self).__init__()

    self.conv = nn.Sequential(
      nn.Conv2d(3, 96, kernel_size=11, stride=4),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3, stride=2),

      nn.Conv2d(96, 256, kernel_size=5, padding=2),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3, stride=2),

      nn.Conv2d(256, 384, kernel_size=3, padding=1),
      nn.ReLU(inplace=True),
      nn.Conv2d(384, 384, kernel_size=3, padding=1),
      nn.ReLU(inplace=True),
      nn.Conv2d(384, 256, kernel_size=3, padding=1),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3, stride=2)
    )

    self.fc = nn.Sequential(
      nn.Linear(???, 4096)
      ......
      ......
    )

首先,我们先把forward写一下:

  def forward(self, x):
    x = self.conv(x)
    print x.size()

就写到这里就可以了。其次,我们初始化一下网络,随机一个输入:

import torch
from Alexnet.AlexNet import *
from torch.autograd import Variable

if __name__ == '__main__':
  net = AlexNet()

  data_input = Variable(torch.randn([1, 3, 96, 96])) # 这里假设输入图片是96x96
  print data_input.size()
  net(data_input)

结果如下:

(1L, 3L, 96L, 96L)
(1L, 256L, 1L, 1L)

显而易见,咱们这个全连接层的input_features为256。

以上这篇pytorch神经网络之卷积层与全连接层参数的设置方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python使用PyGame模块播放声音的方法

本文实例讲述了python使用PyGame模块播放声音的方法。分享给大家供大家参考。具体实现方法如下: import pygame pygame.init() pygame.mixe...

python3使用print打印带颜色的字符串代码实例

一、实现过程 终端的字符颜色是用转义序列控制的,是文本模式下的系统显示功能,和具体的语言无关 转义序列是以ESC开头,即用\033来完成(ESC的ASCII码用十进制表示是27,用八进制...

Python OpenCV实现视频分帧

本文实例为大家分享了Python OpenCV实现视频分帧的具体代码,供大家参考,具体内容如下 # coding=utf-8 import os import cv2 video...

python实现汽车管理系统

本文实例为大家分享了python实现汽车管理系统的具体代码,供大家参考,具体内容如下 1、定义车辆类,属性有车牌号、颜色、车型(小汽车、小卡、中卡和大卡)、到达的时间和离开的时间等信息...

python基础教程项目四之新闻聚合

《python基础教程》书中的第四个练习,新闻聚合。现在很少见的一类应用,至少我从来没有用过,又叫做Usenet。这个程序的主要功能是用来从指定的来源(这里是Usenet新闻组)收集信息...