pytorch神经网络之卷积层与全连接层参数的设置方法

yipeiwu_com6年前Python基础

当使用pytorch写网络结构的时候,本人发现在卷积层与第一个全连接层的全连接层的input_features不知道该写多少?一开始本人的做法是对着pytorch官网的公式推,但是总是算错。

后来发现,写完卷积层后可以根据模拟神经网络的前向传播得出这个。

全连接层的input_features是多少。首先来看一下这个简单的网络。这个卷积的Sequential本人就不再啰嗦了,现在看nn.Linear(???, 4096)这个全连接层的第一个参数该为多少呢?

请看下文详解。

class AlexNet(nn.Module):
  def __init__(self):
    super(AlexNet, self).__init__()

    self.conv = nn.Sequential(
      nn.Conv2d(3, 96, kernel_size=11, stride=4),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3, stride=2),

      nn.Conv2d(96, 256, kernel_size=5, padding=2),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3, stride=2),

      nn.Conv2d(256, 384, kernel_size=3, padding=1),
      nn.ReLU(inplace=True),
      nn.Conv2d(384, 384, kernel_size=3, padding=1),
      nn.ReLU(inplace=True),
      nn.Conv2d(384, 256, kernel_size=3, padding=1),
      nn.ReLU(inplace=True),
      nn.MaxPool2d(kernel_size=3, stride=2)
    )

    self.fc = nn.Sequential(
      nn.Linear(???, 4096)
      ......
      ......
    )

首先,我们先把forward写一下:

  def forward(self, x):
    x = self.conv(x)
    print x.size()

就写到这里就可以了。其次,我们初始化一下网络,随机一个输入:

import torch
from Alexnet.AlexNet import *
from torch.autograd import Variable

if __name__ == '__main__':
  net = AlexNet()

  data_input = Variable(torch.randn([1, 3, 96, 96])) # 这里假设输入图片是96x96
  print data_input.size()
  net(data_input)

结果如下:

(1L, 3L, 96L, 96L)
(1L, 256L, 1L, 1L)

显而易见,咱们这个全连接层的input_features为256。

以上这篇pytorch神经网络之卷积层与全连接层参数的设置方法就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python用requests实现http请求代码实例

这篇文章主要介绍了python用requests实现http请求过程解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 1. get...

Python优先队列实现方法示例

本文实例讲述了Python优先队列实现方法。分享给大家供大家参考,具体如下: 1. 代码 import Queue import threading class Job(object...

python删除列表中重复记录的方法

本文实例讲述了python删除列表中重复记录的方法。分享给大家供大家参考。具体实现方法如下: def removeListDuplicates(seq): seen = set(...

python学习笔记之列表(list)与元组(tuple)详解

前言 最近重新再看python的基础知识,感觉自己还是对于这些知识很陌生,需要用的时候还是需要翻书查阅,还是先注重基础吧——我要重新把python的教程阅读一遍,把以前自己忽略的部分学习...

Python实用日期时间处理方法汇总

原则, 以datetime为中心, 起点或中转, 转化为目标对象, 涵盖了大多数业务场景中需要的日期转换处理 步骤: 1. 掌握几种对象及其关系 2. 了解每类对象的基本操作方法 3....