Numpy掩码式数组详解

yipeiwu_com5年前Python基础

数据很大形况下是凌乱的,并且含有空白的或者无法处理的字符,掩码式数组可以很好的忽略残缺的或者是无效的数据点。掩码式数组由一个正常数组与一个布尔式数组组成,若布尔数组中为Ture,则表示正常数组中对应下标的值无效,反之False表示对应正常数组的值有效。

创建方法为,首先创建一个布尔型数组,然后通过numpy.ma子程序包提供的函数来创建掩码式数组,掩码式数组提供了各种所需函数。

创建实例如下:

import numpy as np
origin = np.arange(16).reshape(4,4)  #生成一个4×4的矩阵
np.random.shuffle(origin)     #随机打乱矩阵元素
random_mask = np.random.randint(0,2,size=origin.shape)#生成随机[0,2)的整数的4×4矩阵
mask_array = np.ma.array(origin,mask=random_mask)#生成掩码式矩阵
print(mask_array)

结果如下:

[[12 13 -- 15]
 [8 9 10 --]
 [-- -- -- 3]
 [-- 5 6 --]]

用于:

1.对负数取对数

import numpy as np
triples = np.arange(0,10,3)#每隔3取0到10中的整数,(0,3,6,9)
signs = np.ones(10)#(1,1,1,1,1,1,1,1,1)
signs[triples] = -1#(-1,1,1,-1,1,1,-1,1,1,-1)
values = signs * 77#(-77,77,77,-77,77,77,-77,77,77,-77)
ma_log = np.ma.log(values)#掩码式取对数
print(ma_log)

结果为:

[-- 4.343805421853684 4.343805421853684 -- 4.343805421853684
 4.343805421853684 -- 4.343805421853684 4.343805421853684 --]

2.忽略极值

import numpy as np
inside = np.ma.masked_outside(array,min,max)

以上这篇Numpy掩码式数组详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python hashlib加密模块常用方法解析

这篇文章主要介绍了Python hashlib加密模块常用方法解析,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 主要用于对字符串的加...

python使用openCV遍历文件夹里所有视频文件并保存成图片

python使用openCV遍历文件夹里所有视频文件并保存成图片

如果你在文件夹里有很多视频,并且文件夹里还有文件夹,文件夹里的文件夹也有视频,怎么能逐个读取并且保存。。所以我写了个代码用了os,walk,这个可以遍历所有文件夹里的文件和文件夹 i...

Python利用IPython提高开发效率

Python利用IPython提高开发效率

一、IPython 简介 IPython 是一个交互式的 Python 解释器,而且它更加高效。 它和大多传统工作模式(编辑 -> 编译 -> 运行)不同的是, 它采用的工...

详细介绍Python的鸭子类型

鸭子类型基本定义 首先Python不支持多态,也不用支持多态,python是一种多态语言,崇尚鸭子类型。 以下是维基百科中对鸭子类型得论述: 在程序设计中,鸭子类型(英语:duck t...

Django 路由系统URLconf的使用

Django 路由系统URLconf的使用

URLconf是什么? URL配置(URLconf)就像Django 所支撑网站的目录。它的本质是URL与要为该URL调用的view函数之间的映射表;你就是以这种方式告诉Django,...