Numpy掩码式数组详解

yipeiwu_com5年前Python基础

数据很大形况下是凌乱的,并且含有空白的或者无法处理的字符,掩码式数组可以很好的忽略残缺的或者是无效的数据点。掩码式数组由一个正常数组与一个布尔式数组组成,若布尔数组中为Ture,则表示正常数组中对应下标的值无效,反之False表示对应正常数组的值有效。

创建方法为,首先创建一个布尔型数组,然后通过numpy.ma子程序包提供的函数来创建掩码式数组,掩码式数组提供了各种所需函数。

创建实例如下:

import numpy as np
origin = np.arange(16).reshape(4,4)  #生成一个4×4的矩阵
np.random.shuffle(origin)     #随机打乱矩阵元素
random_mask = np.random.randint(0,2,size=origin.shape)#生成随机[0,2)的整数的4×4矩阵
mask_array = np.ma.array(origin,mask=random_mask)#生成掩码式矩阵
print(mask_array)

结果如下:

[[12 13 -- 15]
 [8 9 10 --]
 [-- -- -- 3]
 [-- 5 6 --]]

用于:

1.对负数取对数

import numpy as np
triples = np.arange(0,10,3)#每隔3取0到10中的整数,(0,3,6,9)
signs = np.ones(10)#(1,1,1,1,1,1,1,1,1)
signs[triples] = -1#(-1,1,1,-1,1,1,-1,1,1,-1)
values = signs * 77#(-77,77,77,-77,77,77,-77,77,77,-77)
ma_log = np.ma.log(values)#掩码式取对数
print(ma_log)

结果为:

[-- 4.343805421853684 4.343805421853684 -- 4.343805421853684
 4.343805421853684 -- 4.343805421853684 4.343805421853684 --]

2.忽略极值

import numpy as np
inside = np.ma.masked_outside(array,min,max)

以上这篇Numpy掩码式数组详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现基于两张图片生成圆角图标效果的方法

本文实例讲述了python实现基于两张图片生成圆角图标效果的方法。分享给大家供大家参考。具体分析如下: 使用pil的蒙版功能,将原图片和圆角图片进行叠加,并将圆角图片作为mask,生成新...

Python3.6实现带有简单界面的有道翻译小程序

本人使用的是Python3.6(32bit),在win10上运行的     代码如下: from tkinter import * import url...

python人民币小写转大写辅助工具

本文实例为大家分享了python人民币大小写转换的具体代码,供大家参考,具体内容如下 大家应该都知道,银行打印账单有时候会跟上人民币的阿拉伯数字以及人民币汉字大写写法,转换的过程中有一定...

Django管理员账号和密码忘记的完美解决方法

Django管理员账号和密码忘记的完美解决方法

发现问题 看着Django的教程学习搭建网站,结果忘记第一次创建的账号和密码了。结果搭建成功以后,一直无法登陆到管理页面,进行不下去了。 如图所示: 在网上找了很多的方法都不行,最后使...

浅谈Python使用Bottle来提供一个简单的web服务

介绍 今天有个不正经的需求,就是要快速做一个restful api的性能测试,要求测试在海量作业数据的情况下客户端分页获取所有作业的性能。因为只是一个小的的测试工作,所以就想到了Bott...