关于pytorch多GPU训练实例与性能对比分析

yipeiwu_com5年前Python基础

以下实验是我在百度公司实习的时候做的,记录下来留个小经验。

多GPU训练

cifar10_97.23 使用 run.sh 文件开始训练

cifar10_97.50 使用 run.4GPU.sh 开始训练

在集群中改变GPU调用个数修改 run.sh 文件

nohup srun --job-name=cf23 $pt --gres=gpu:2 -n1 bash cluster_run.sh $cmd 2>&1 1>>log.cf50_2GPU &

修改 –gres=gpu:2 即可

Python 文件代码修改

parser.add_argument('--batch_size', type=int, default=96*2, help='batch size')

修改对应 batch size 大小,保证每块GPU获得等量的训练数据,因为batch_size的改变会影响训练精度

最容易实现的单GPU训练改为多GPU训练代码

单GPU:logits, logits_aux = model(input)

多GPU:

if torch.cuda.device_count()>1:#判断是否能够有大于一的GPU资源可以调用

   logits, logits_aux =nn.parallel.data_parallel(model,input)

  else:

   logits, logits_aux = model(input)

缺点:不是性能最好的实现方式

优点:代码嵌入适应性强,不容易报错

性能分析

该图为1到8GPU训练cifar10——97.23网络的实验对比

可以看到单核训练600轮需要53小时、双核训练600轮需要26小时、四核16、六核14、八核13。

在可运行7小时的GPU上的对比实验:单核跑完83轮、双核跑完163轮、四核跑完266轮

结论:性价比较高的是使用4~6核GPU进行训练,但是多GPU训练对于单GPU训练有所差异,训练的准确率提升会有所波动,目前发现的是负面的影响。

以上这篇关于pytorch多GPU训练实例与性能对比分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Django 多环境配置详解

本文也是开发项目中的一个小经验Tip,虽然很简单,但对很多朋友也有小帮助。 我们实际工程中,可能遇到开发环境、预上线环境、线上环境等环境场景,应用配置因此可能有所不同。 我的经验是利用环...

Python列出一个文件夹及其子目录的所有文件

python简介 Python是一种解释型、面向对象、动态数据类型的高级程序设计语言。 Python由Guido van Rossum于1989年底发明,第一个公开发行版发行于1991...

python实现自动更换ip的方法

本文实例讲述了python实现自动更换ip的方法。分享给大家供大家参考。具体实现方法如下: #!/usr/bin/env python #-*- encoding:gb2312 -*...

Python 文件重命名工具代码

复制代码 代码如下:#Filename:brn.py #Description: batch replace certain words in file names #Use to ba...

Python3模拟登录操作实例分析

Python3模拟登录操作实例分析

本文实例讲述了Python3模拟登录操作。分享给大家供大家参考,具体如下: 模拟登录_要求: 1. 用户输入账号密码进行登录 2. 用户信息保存在文件内 3. 用户密码输入错误三次后锁定...