关于pytorch多GPU训练实例与性能对比分析

yipeiwu_com6年前Python基础

以下实验是我在百度公司实习的时候做的,记录下来留个小经验。

多GPU训练

cifar10_97.23 使用 run.sh 文件开始训练

cifar10_97.50 使用 run.4GPU.sh 开始训练

在集群中改变GPU调用个数修改 run.sh 文件

nohup srun --job-name=cf23 $pt --gres=gpu:2 -n1 bash cluster_run.sh $cmd 2>&1 1>>log.cf50_2GPU &

修改 –gres=gpu:2 即可

Python 文件代码修改

parser.add_argument('--batch_size', type=int, default=96*2, help='batch size')

修改对应 batch size 大小,保证每块GPU获得等量的训练数据,因为batch_size的改变会影响训练精度

最容易实现的单GPU训练改为多GPU训练代码

单GPU:logits, logits_aux = model(input)

多GPU:

if torch.cuda.device_count()>1:#判断是否能够有大于一的GPU资源可以调用

   logits, logits_aux =nn.parallel.data_parallel(model,input)

  else:

   logits, logits_aux = model(input)

缺点:不是性能最好的实现方式

优点:代码嵌入适应性强,不容易报错

性能分析

该图为1到8GPU训练cifar10——97.23网络的实验对比

可以看到单核训练600轮需要53小时、双核训练600轮需要26小时、四核16、六核14、八核13。

在可运行7小时的GPU上的对比实验:单核跑完83轮、双核跑完163轮、四核跑完266轮

结论:性价比较高的是使用4~6核GPU进行训练,但是多GPU训练对于单GPU训练有所差异,训练的准确率提升会有所波动,目前发现的是负面的影响。

以上这篇关于pytorch多GPU训练实例与性能对比分析就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python实现微信发送邮件关闭电脑功能

Python 通过微信邮件实现电脑关机,供大家参考,具体内容如下 通过手机微信发送QQ邮件给sina邮箱,然后利用python的pop3定时检查sina邮箱的邮件主题以及邮件来源,并在电...

Python实现发送与接收邮件的方法详解

Python实现发送与接收邮件的方法详解

本文实例讲述了Python实现发送与接收邮件的方法。分享给大家供大家参考,具体如下: 一、发送邮件 这里实现给网易邮箱发送邮件功能: import smtplib import tk...

Python只用40行代码编写的计算器实例

Python只用40行代码编写的计算器实例

本文实例讲述了Python只用40行代码编写的计算器。分享给大家供大家参考,具体如下: 效果图: 代码: from tkinter import * reset=True def...

python使用正则筛选信用卡

python使用正则筛选信用卡

本文实例为大家分享了python使用正则筛选信用卡的具体代码,供大家参考,具体内容如下 本文来源于两个简单的题目: 1.判断一对单词是否是" Anagrams " 2.判断信用卡是否合理...

python生成指定长度的随机数密码

复制代码 代码如下:#!/usr/bin/env python# -*- coding:utf-8 -*- #导入random和string模块import random, string...