pytorch 可视化feature map的示例代码

yipeiwu_com5年前Python基础

之前做的一些项目中涉及到feature map 可视化的问题,一个层中feature map的数量往往就是当前层out_channels的值,我们可以通过以下代码可视化自己网络中某层的feature map,个人感觉可视化feature map对调参还是很有用的。

不多说了,直接看代码:

import torch
from torch.autograd import Variable
import torch.nn as nn
import pickle

from sys import path
path.append('/residual model path')
import residual_model
from residual_model import Residual_Model

model = Residual_Model()
model.load_state_dict(torch.load('./model.pkl'))



class myNet(nn.Module):
  def __init__(self,pretrained_model,layers):
    super(myNet,self).__init__()
    self.net1 = nn.Sequential(*list(pretrained_model.children())[:layers[0]])
    self.net2 = nn.Sequential(*list(pretrained_model.children())[:layers[1]])
    self.net3 = nn.Sequential(*list(pretrained_model.children())[:layers[2]])

  def forward(self,x):
    out1 = self.net1(x)
    out2 = self.net(out1)
    out3 = self.net(out2)
    return out1,out2,out3

def get_features(pretrained_model, x, layers = [3, 4, 9]): ## get_features 其实很简单
'''
1.首先import model 
2.将weights load 进model
3.熟悉model的每一层的位置,提前知道要输出feature map的网络层是处于网络的那一层
4.直接将test_x输入网络,*list(model.chidren())是用来提取网络的每一层的结构的。net1 = nn.Sequential(*list(pretrained_model.children())[:layers[0]]) ,就是第三层前的所有层。

'''
  net1 = nn.Sequential(*list(pretrained_model.children())[:layers[0]]) 
#  print net1 
  out1 = net1(x) 

  net2 = nn.Sequential(*list(pretrained_model.children())[layers[0]:layers[1]]) 
#  print net2 
  out2 = net2(out1) 

  #net3 = nn.Sequential(*list(pretrained_model.children())[layers[1]:layers[2]]) 
  #out3 = net3(out2) 

  return out1, out2
with open('test.pickle','rb') as f:
  data = pickle.load(f)
x = data['test_mains'][0]
x = Variable(torch.from_numpy(x)).view(1,1,128,1) ## test_x必须为Varibable
#x = Variable(torch.randn(1,1,128,1))
if torch.cuda.is_available():
  x = x.cuda() # 如果模型的训练是用cuda加速的话,输入的变量也必须是cuda加速的,两个必须是对应的,网络的参数weight都是用cuda加速的,不然会报错
  model = model.cuda()
output1,output2 = get_features(model,x)## model是训练好的model,前面已经import 进来了Residual model
print('output1.shape:',output1.shape)
print('output2.shape:',output2.shape)
#print('output3.shape:',output3.shape)
output_1 = torch.squeeze(output2,dim = 0)
output_1_arr = output_1.data.cpu().numpy() # 得到的cuda加速的输出不能直接转变成numpy格式的,当时根据报错的信息首先将变量转换为cpu的,然后转换为numpy的格式
output_1_arr = output_1_arr.reshape([output_1_arr.shape[0],output_1_arr.shape[1]])

以上这篇pytorch 可视化feature map的示例代码就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python跑循环时内存泄露的解决方法

Python跑循环时内存泄露的解决方法

Python跑循环时内存泄露 今天在用Tensorflow跑回归做测试时,仅仅需要循环四千多次 (补充说一句,我在个人PC上跑的)。运行以后,我就吃饭去了。等我回来后,Console窗口...

Python模拟百度自动输入搜索功能的实例

如下所示: # 访问百度,模拟自动输入搜索 # 代码中引入selenium版本为:3.4.3 # 通过Chrom浏览器访问发起请求 # Chrom版本:59 ,chromdrive...

python 简单的绘图工具turtle使用详解

python 简单的绘图工具turtle使用详解

目录 1. 画布(canvas)   1.1 设置画布大小 2. 画笔   2.1 画笔的状态   2....

Android模拟器无法启动,报错:Cannot set up guest memory ‘android_arm’ Invalid argument的解决方法

Android模拟器无法启动,报错:Cannot set up guest memory ‘android_arm’ Invalid argument的解决方法

本文实例讲述了Android模拟器无法启动,报错:Cannot set up guest memory ‘android_arm': Invalid argument的解决方法。分享给大...

python3实现小球转动抽奖小游戏

python3实现小球转动抽奖小游戏

最近老师在讲 tkinter,所以我做了一个抽奖小游戏。 一、效果图 先上效果图。红色的小球会围绕蓝色小球做环形运动。我设置的四个角是奖品,其余的都是再接再厉。 二、方法 基于tkin...