浅谈pytorch grad_fn以及权重梯度不更新的问题

yipeiwu_com5年前Python基础

前提:我训练的是二分类网络,使用语言为pytorch

Varibale包含三个属性:

data:存储了Tensor,是本体的数据

grad:保存了data的梯度,本事是个Variable而非Tensor,与data形状一致

grad_fn:指向Function对象,用于反向传播的梯度计算之用

在构建网络时,刚开始的错误为:没有可以grad_fn属性的变量。

百度后得知要对需要进行迭代更新的变量设置requires_grad=True ,操作如下:

train_pred = Variable(train_pred.float(), requires_grad=True)`

这样设置之后网络是跑起来了,但是准确率一直没有提升,很明显可以看出网络什么都没学到。

我输出 model.parameters() (网络内部的权重和偏置)查看,发现它的权重并没有更新,一直是同一个值,至此可以肯定网络什么都没学到,还是迭代那里出了问题。

询问同门后发现问题不在这里。

计算loss时,target与train_pred的size不匹配,我以以下操作修改了train_pred,使两者尺寸一致,才导致了上述问题。

  train_pred = model(data)
  train_pred = torch.max(train_pred, 1)[1].data.squeeze()
  train_pred = Variable(train_pred.float(), requires_grad=False)
  train_loss = F.binary_cross_entropy(validation_pred.float(), target)
  train_loss.backward()

对train_pred多次处理后,它已无法正确地反向传播,实际上应该更改target,使其与train_pred size一致。

重点!!!要想loss正确反向传播,应直接将model(data)传入loss函数。

最终修改代码如下:

 for batch_idx, (data, target) in enumerate(train_loader):
  # Get Samples
  label = target.view(target.size(0), 1).long()
  target_onehot = torch.zeros(data.shape[0], args.num_classes).scatter_(1, label, 1)
  data, target_onehot = Variable(data.cuda()), Variable(target_onehot.cuda().float())
  
  model.zero_grad()

  # Predict
  train_pred = model(data)
  train_loss = F.binary_cross_entropy(train_pred, target_onehot)
  train_loss.backward()
  optimizer.step()

以上这篇浅谈pytorch grad_fn以及权重梯度不更新的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python脚本实现音频m4a格式转成MP3格式的实例代码

python脚本实现音频m4a格式转成MP3格式的实例代码

前言 群里看到有人询问:谁会用python将微信音频文件后缀m4a格式转成mp3格式,毫不犹豫回了句:我会。 然后就私下聊起来了 解决方法介绍如下: 工具:windows系统,pytho...

python实现名片管理器的示例代码

编写程序,完成“名片管理器”项目 需要完成的基本功能: 添加名片 删除名片 修改名片 查询名片 退出系统 程序运行后,除非选择退出系统,否则重复执行功能 mi...

基于Python os模块常用命令介绍

基于Python os模块常用命令介绍

1、os.name---判断现在正在实用的平台,Windows返回'nt';linux返回'posix' 2、os.getcwd()---得到当前工作的目录。 3、os.listdir(...

详细介绍Ruby中的正则表达式

详细介绍Ruby中的正则表达式

正则表达式是一种特殊序列的字符,它通过使用有专门语法的模式来匹配或查找其他字符串或字符串集合。 语法 正则表达式从字面上看是一种介于斜杠之间或介于跟在 %r 后的任意分隔符之间的模式,如...

详解Django配置优化方法

详解Django配置优化方法

​一、使用多个setting文件  开发Django项目是最常见,也是最麻烦的一个问题就是如何区分开发配置与线上配置。有一些解决方案是利用配置文件是py文件这个特性...