浅谈pytorch grad_fn以及权重梯度不更新的问题

yipeiwu_com6年前Python基础

前提:我训练的是二分类网络,使用语言为pytorch

Varibale包含三个属性:

data:存储了Tensor,是本体的数据

grad:保存了data的梯度,本事是个Variable而非Tensor,与data形状一致

grad_fn:指向Function对象,用于反向传播的梯度计算之用

在构建网络时,刚开始的错误为:没有可以grad_fn属性的变量。

百度后得知要对需要进行迭代更新的变量设置requires_grad=True ,操作如下:

train_pred = Variable(train_pred.float(), requires_grad=True)`

这样设置之后网络是跑起来了,但是准确率一直没有提升,很明显可以看出网络什么都没学到。

我输出 model.parameters() (网络内部的权重和偏置)查看,发现它的权重并没有更新,一直是同一个值,至此可以肯定网络什么都没学到,还是迭代那里出了问题。

询问同门后发现问题不在这里。

计算loss时,target与train_pred的size不匹配,我以以下操作修改了train_pred,使两者尺寸一致,才导致了上述问题。

  train_pred = model(data)
  train_pred = torch.max(train_pred, 1)[1].data.squeeze()
  train_pred = Variable(train_pred.float(), requires_grad=False)
  train_loss = F.binary_cross_entropy(validation_pred.float(), target)
  train_loss.backward()

对train_pred多次处理后,它已无法正确地反向传播,实际上应该更改target,使其与train_pred size一致。

重点!!!要想loss正确反向传播,应直接将model(data)传入loss函数。

最终修改代码如下:

 for batch_idx, (data, target) in enumerate(train_loader):
  # Get Samples
  label = target.view(target.size(0), 1).long()
  target_onehot = torch.zeros(data.shape[0], args.num_classes).scatter_(1, label, 1)
  data, target_onehot = Variable(data.cuda()), Variable(target_onehot.cuda().float())
  
  model.zero_grad()

  # Predict
  train_pred = model(data)
  train_loss = F.binary_cross_entropy(train_pred, target_onehot)
  train_loss.backward()
  optimizer.step()

以上这篇浅谈pytorch grad_fn以及权重梯度不更新的问题就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

跟老齐学Python之编写类之四再论继承

跟老齐学Python之编写类之四再论继承

在上一讲代码的基础上,做进一步修改,成为了如下程序,请看官研习这个程序: 复制代码 代码如下: #!/usr/bin/env python #coding:utf-8 class Per...

python sqlobject(mysql)中文乱码解决方法

UnicodeEncodeError: 'latin-1' codec can't encode characters in position; 找了一天终于搞明白了,默认情况下,mys...

Python hashlib模块用法实例分析

本文实例讲述了Python hashlib模块用法。分享给大家供大家参考,具体如下: 一、hashlib基本使用 python中的hashlib模块用来进行hash或者md5加密,而且这...

Python中内建函数的简单用法说明

Python提供了一个内联模块buildin,该模块定义了一些软件开发中经常用到的函数,利用这些函数可以实现数据类型的转换、数据的计算、序列的处理等。 buildin模块的内置函数: 1...

python 连接各类主流数据库的实例代码

本篇博文主要介绍Python连接各种数据库的方法及简单使用 包括关系数据库:sqlite,mysql,mssql 非关系数据库:MongoDB,Redis 代码写的比较清楚,直接上代码...