python实现感知机线性分类模型示例代码

yipeiwu_com6年前Python基础

前言

感知器是分类的线性分类模型,其中输入为实例的特征向量,输出为实例的类别,取+1或-1的值作为正类或负类。感知器对应于输入空间中对输入特征进行分类的超平面,属于判别模型。

通过梯度下降使误分类的损失函数最小化,得到了感知器模型。

本节为大家介绍实现感知机实现的具体原理代码:

行结果如图所示:

总结

以上就是这篇文章的全部内容了,希望本文的内容对大家的学习或者工作具有一定的参考学习价值,谢谢大家对【听图阁-专注于Python设计】的支持。

相关文章

用Python操作字符串之rindex()方法的使用

 rindex()方法返回所在的子str被找到的最后一个索引,可选择限制搜索的字符串string[beg:end] 如果没有这样的索引存在,抛出一个异常。 语法 以下是rind...

Python函数参数匹配模型通用规则keyword-only参数详解

Python3对函数参数的排序规则更加通用化了,即Python3 keyword-only参数,该参数即为必须只按照关键字传递而不会有一个位置参数来填充的参数。该规则在处理人一多个参数是...

运行django项目指定IP和端口的方法

运行django项目指定IP和端口的方法

一、django项目启动命令 默认IP和端口 python manage.py runserver 指定端口 python manage.py runserver 192.1...

简单介绍利用TK在Python下进行GUI编程的教程

简单介绍利用TK在Python下进行GUI编程的教程

我想要向您介绍能想像到的开始 GUI 编程的最简单方法,就是使用 Scriptics 的 TK 和 Tkinter 封装器。我们将与 developerWorks 中的 “Python...

python获得文件创建时间和修改时间的方法

本文实例讲述了python获得文件创建时间和修改时间的方法。分享给大家供大家参考。具体如下: 这里需要用户从控制台输入文件路径 import os.path, time import...