python并发编程多进程 模拟抢票实现过程

yipeiwu_com6年前Python基础

 抢票是并发执行

多个进程可以访问同一个文件

多个进程共享同一文件,我们可以把文件当数据库,用多个进程模拟多个人执行抢票任务

db.txt

{"count": 1}

并发运行,效率高,但竞争写同一文件,数据写入错乱,只有一张票,都卖成功给了10个人

#文件db.txt的内容为:{"count":1}
#注意一定要用双引号,不然json无法识别
from multiprocessing import Process
import time
import json
class Foo(object):
  def search(self, name):
    with open("db.txt", "r") as f_read:
      dic = json.load(f_read)
      time.sleep(1) # 模拟读数据的网络延迟
      print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"]))
  def get(self, name):
    with open("db.txt", "r") as f_read:
      dic = json.load(f_read)
      if dic["count"] > 0:
        dic["count"] -= 1
        time.sleep(1) # 模拟写数据的网络延迟
        with open("db.txt", "w") as f_write:
          json.dump(dic, f_write)
          print("<%s> 购票成功" % name)
          print("剩余票数为 [%s]" % dic["count"])
      else:
        print("没票了,抢光了")
  def task(self, name):
    self.search(name)
    self.get(name)
if __name__ == "__main__":
  obj = Foo()
  for i in range(1,11):  # 模拟并发10个客户端抢票
    p = Process(target=obj.task, args=("路人%s" % i,))
    p.start()

总结:程序出现数据写入错乱

大家都查到票为1,都购票成功

<路人1>用户 查看剩余票数为 [1]
<路人2>用户 查看剩余票数为 [1]
<路人3>用户 查看剩余票数为 [1]
<路人4>用户 查看剩余票数为 [1]
<路人5>用户 查看剩余票数为 [1]
<路人6>用户 查看剩余票数为 [1]
<路人7>用户 查看剩余票数为 [1]
<路人8>用户 查看剩余票数为 [1]
<路人9>用户 查看剩余票数为 [1]
<路人10>用户 查看剩余票数为 [1]
<路人1> 购票成功
剩余票数为 [0]
<路人2> 购票成功
剩余票数为 [0]
<路人3> 购票成功
剩余票数为 [0]
<路人4> 购票成功
剩余票数为 [0]
<路人5> 购票成功
剩余票数为 [0]
<路人6> 购票成功
剩余票数为 [0]
<路人7> 购票成功
剩余票数为 [0]
<路人8> 购票成功
剩余票数为 [0]
<路人9> 购票成功
剩余票数为 [0]
<路人10> 购票成功
剩余票数为 [0]

总结程序出现数据写入错乱

加锁处理:购票行为由并发变成了串行,牺牲了运行效率,但保证了数据安全

购票功能不应该并发执行,查票应该是并发执行的

查票准不准确不重要,有可能这张票就被别人买走

一个人写完以后,让另外一个人基于上一个人写的结果,再做购票操作

#把文件db.txt的内容重置为:{"count":1}
from multiprocessing import Process
from multiprocessing import Lock
import time
import json
class Foo(object):
  def search(self, name):
    with open("db.txt", "r") as f_read:
      dic = json.load(f_read)
      time.sleep(1) # 模拟读数据的网络延迟
      print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"]))
  def get(self, name):
    with open("db.txt", "r") as f_read:
      dic = json.load(f_read)
      if dic["count"] > 0:
        dic["count"] -= 1
        time.sleep(1) # 模拟写数据的网络延迟
        with open("db.txt", "w") as f_write:
          json.dump(dic, f_write)
          print("<%s> 购票成功" % name)
          print("剩余票数为 [%s]" % dic["count"])
      else:
        print("没票了,抢光了")
  def task(self, name, mutex):
    self.search(name)
    mutex.acquire()
    self.get(name)
    mutex.release()
if __name__ == "__main__":
  mutex = Lock()
  obj = Foo()
  for i in range(1,11): # 模拟并发10个客户端抢票
    p = Process(target=obj.task, args=("路人%s" % i, mutex))
    p.start()

执行结果

<路人2>用户 查看剩余票数为 [1]
<路人3>用户 查看剩余票数为 [1]
<路人1>用户 查看剩余票数为 [1]
<路人4>用户 查看剩余票数为 [1]
<路人5>用户 查看剩余票数为 [1]
<路人7>用户 查看剩余票数为 [1]
<路人6>用户 查看剩余票数为 [1]
<路人8>用户 查看剩余票数为 [1]
<路人9>用户 查看剩余票数为 [1]
<路人10>用户 查看剩余票数为 [1]
<路人2> 购票成功
剩余票数为 [0]
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了
没票了,抢光了

with lock

相当于lock.acquire(),执行完自代码块自动执行lock.release()

from multiprocessing import Process
from multiprocessing import Lock
import time
import json
class Foo(object):
  def search(self, name):
    with open("db.txt", "r") as f_read:
      dic = json.load(f_read)

      time.sleep(1) # 模拟读数据的网络延迟
      print("<%s>用户 查看剩余票数为 [%s]" % (name, dic["count"]))
  def get(self, name):
    with open("db.txt", "r") as f_read:
      dic = json.load(f_read)
      if dic["count"] > 0:
        dic["count"] -= 1
        time.sleep(1) # 模拟写数据的网络延迟
        with open("db.txt", "w") as f_write:
          json.dump(dic, f_write)
          print("<%s> 购票成功" % name)
          print("剩余票数为 [%s]" % dic["count"])
      else:
        print("没票了,抢光了")
  def task(self, name, mutex):
    self.search(name)
    with mutex: # 相当于lock.acquire(),执行完自代码块自动执行lock.release()
      self.get(name)
if __name__ == "__main__":
  mutex = Lock()
  obj = Foo()
  for i in range(1,11): # 模拟并发10个客户端抢票
    p = Process(target=obj.task, args=("路人%s" % i, mutex))
    p.start()

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python如何使用k-means方法将列表中相似的句子归类

Python如何使用k-means方法将列表中相似的句子归类

前言 由于今年暑假在学习一些自然语言处理的东西,发现网上对k-means的讲解不是很清楚,网上大多数代码只是将聚类结果以图片的形式呈现,而不是将聚类的结果表示出来,于是我将老师给的代码和...

python中web框架的自定义创建

一、什么是框架 框架的本质就是一个socket服务,可以完成不同主机之间的通信。它是一个半成品的项目,其中可能已经封装好了基本的功能,比如路由,模型,模板,视图功能都已完善,又可能它只封...

python 模拟创建seafile 目录操作示例

本文实例讲述了python 模拟创建seafile 目录操作。分享给大家供大家参考,具体如下: # !/usr/bin/env python # -*- coding: utf-8...

Python计算机视觉里的IOU计算实例

其中x1,y1;x2,y2分别表示两个矩形框的中心点 def calcIOU(x1, y1, w1, h1, x2, y2, w2, h2): if((abs(x1 - x2)...

OpenCV搞定腾讯滑块验证码的实现代码

OpenCV搞定腾讯滑块验证码的实现代码

前言 废话 滑块验证码破解是一直都想搞的项目,毕竟多数网站都会采用滑块验证码,于是最近在修改论文的闲暇之余把这事儿给解决了。要搞现在的滑块验证码绕不开图像处理,图像处理当然是首推Ope...