python 画出使用分类器得到的决策边界

yipeiwu_com5年前Python基础

获取数据集,并画图代码如下:

import numpy as np
from sklearn.datasets import make_moons
import matplotlib.pyplot as plt
# 手动生成一个随机的平面点分布,并画出来
np.random.seed(0)
X, y = make_moons(200, noise=0.20)
plt.scatter(X[:,0], X[:,1], s=40, c=y, cmap=plt.cm.Spectral)
plt.show()

得到图如下:


定义决策边界函数:

# 咱们先顶一个一个函数来画决策边界
def plot_decision_boundary(pred_func):
 
 # 设定最大最小值,附加一点点边缘填充
 x_min, x_max = X[:, 0].min() - .5, X[:, 0].max() + .5
 y_min, y_max = X[:, 1].min() - .5, X[:, 1].max() + .5
 h = 0.01
 
 xx, yy = np.meshgrid(np.arange(x_min, x_max, h), np.arange(y_min, y_max, h))
 
 # 用预测函数预测一下
 Z = pred_func(np.c_[xx.ravel(), yy.ravel()])
 Z = Z.reshape(xx.shape)
 
 # 然后画出图
 plt.contourf(xx, yy, Z, cmap=plt.cm.Spectral)
 plt.scatter(X[:, 0], X[:, 1], c=y, cmap=plt.cm.Spectral)

定义分类函数,并画出决策边界图代码如下:

from sklearn.linear_model import LogisticRegressionCV
#咱们先来瞄一眼逻辑斯特回归对于它的分类效果
clf = LogisticRegressionCV()
clf.fit(X, y)
 
# 画一下决策边界
plot_decision_boundary(lambda x: clf.predict(x))
plt.title("Logistic Regression")
plt.show()

画图如下:


以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python设定并获取socket超时时间的方法

python写法 import socket def test_socket_timeout(): s = socket.socket(socket.AF_INET,...

Python中不同进制互相转换(二进制、八进制、十进制和十六进制)

在我的印象里面进制互相转换确实是很常见的问题,所以在Python中,自然也少不了把下面这些代码收为util。 这是从网上搜索的一篇也的还可以的Python进制转换,经过验证可以使用。下面...

Win下PyInstaller 安装和使用教程

Win下PyInstaller 安装和使用教程

简介: PyInstaller可以将Python源代码发布成Win/MacOS等系统中的可执行文件。对开发者而言隐藏了源码实现,保护了知识产权。对使用者而言不用装环境,傻瓜式的双击就可以...

解决Pycharm中import时无法识别自己写的程序方法

我们用pycharm打开自己写的代码,当多个文件之间有相互依赖的关系的时候,import无法识别自己写的文件,但是我们写的文件又确实在同一个文件夹中, 这种问题可以用下面的方法解决: 1...

Python 网络编程之UDP发送接收数据功能示例【基于socket套接字】

本文实例讲述了Python 网络编程之UDP发送接收数据功能。分享给大家供大家参考,具体如下: demo.py(UDP发送数据): import socket # 导入socket模...