python实现在多维数组中挑选符合条件的全部元素

yipeiwu_com6年前Python基础

问题产生:今天在编写神经网络的Cluster作业时,需要根据根据数据标签用不同的颜色画出数据的分布情况,由此学习到了这种高效的方法。

传统思路:用for循环来挑选符合条件的元素,这样十分浪费时间。

代码示例:

from sklearn.datasets.samples_generator import make_blobs
import numpy as np
import matplotlib.pyplot as plt

#product 20 samples and divide them in 4 different types
X, label_true = make_blobs(n_samples=20,centers=4)
print("Data:{:}".format(X))
print("label_true:{:}".format(label_true))

#eliminate the repeated elements
labels=np.unique(label_true)
print("labels:{:}".format(labels))

#plot
fig = plt.figure()
ax = fig.add_subplot(1, 1, 1)
colors = 'rgbycm'
for index,elem in enumerate(labels):
 position=label_true==elem
 print("position{:}:{:}".format(index,position))
 plt.scatter(X[position,0],X[position,1],label="cluster %d"%elem,color=colors[index%len(colors)])
plt.show()

实验结果:

Data:[[ 6.28987299 1.19041843]
 [ 2.12673463 -1.90647309]
 [-8.56276424 1.8136798 ]
 [ 2.42611937 -3.81970786]
 [ 1.83488662 -3.10733306]
 [ 6.28320138 -0.24840258]
 [-6.74802304 1.13642657]
 [ 2.21681643 6.28894411]
 [-7.16100601 0.04482262]
 [ 1.66858847 3.42225284]
 [ 3.19972789 4.58804196]
 [-7.37006942 0.57068008]
 [ 0.52465584 -2.68794047]
 [ 2.71075921 3.57281778]
 [ 5.99343237 0.0120798 ]
 [ 4.28307033 4.28727222]
 [ 0.73714246 -2.38643522]
 [ 5.58384782 -0.62066592]
 [-8.44295576 -0.05933983]
 [ 5.33991984 1.24833992]]
label_true:[0 2 1 2 2 0 1 3 1 3 3 1 2 3 0 3 2 0 1 0]
labels:[0 1 2 3]
position0:[ True False False False False True False False False False False False
 False False True False False True False True]
position1:[False False True False False False True False True False False True
 False False False False False False True False]
position2:[False True False True True False False False False False False False
 True False False False True False False False]
position3:[False False False False False False False True False True True False
 False True False True False False False False]

结果分析:

我们可以看出黄色部分的作用,第一行 position=label_true==elem 的作用是让position在label_true==elem的位置置为True,反之为False,从而得到的position是一个True和False的集合,

而第三行 X[position,0],X[position,1] 就是选择为True的位置上的横坐标和纵坐标,打印出来。还有点懵?我们用最简单的数组来表示

代码示例

import numpy as np
a=np.empty(shape=[0,4], dtype=int)
a=np.append(a,[[1,2,3,4],[2,3,4,5],[7,8,9,10]],axis=0)
position=[True,False,True]
print(a)
print(a[position,3])

结果:

[[ 1 2 3 4]
 [ 2 3 4 5]
 [ 7 8 9 10]]
[ 4 10]

结果分析:

显然这是一个3行4列的矩阵,我们用position得到的是[a[0],a[2]],然后取a[0]和a[2]的第4个元素,则为4和10.

是不是比用for快多了~~

以上这篇python实现在多维数组中挑选符合条件的全部元素就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

使用Kivy将python程序打包为apk文件

使用Kivy将python程序打包为apk文件

1.概述 Kivy是一套Python下的跨平台开源应用开发框架,官网,我们可以用 它来将Python程序打包为安卓的apk安装文件。以下是在windows环境中使用。 安装和配置的过程中...

python实现得到当前登录用户信息的方法

本文实例讲述了python实现得到当前登录用户信息的方法。分享给大家供大家参考,具体如下: 在linux 环境下,python 更多的被当做 替代 SHELL 的工具语言, 其实linu...

Python中处理字符串之endswith()方法的使用简介

 endswith()方法返回true,如果字符串以指定后缀结尾,否则返回(False可选限制的匹配从给定的索引开始和结束)。 语法 以下是endswith()方法的语法:...

python处理csv数据动态显示曲线实例代码

本文研究的主要是python处理csv数据动态显示曲线,分享了实现代码,具体如下。 代码: # -*- coding: utf-8 -*- """ Spyder Editor...

研究Python的ORM框架中的SQLAlchemy库的映射关系

前面介绍了关于用户账户的User表,但是现实生活中随着问题的复杂化数据库存储的数据不可能这么简单,让我们设想有另外一张表,这张表和User有联系,也能够被映射和查询,那么这张表可以存储关...