Python实现滑动平均(Moving Average)的例子

yipeiwu_com5年前Python基础

Python中滑动平均算法(Moving Average)方案:

#!/usr/bin/env python
# -*- coding: utf-8 -*-

import numpy as np

# 等同于MATLAB中的smooth函数,但是平滑窗口必须为奇数。

# yy = smooth(y) smooths the data in the column vector y ..
# The first few elements of yy are given by
# yy(1) = y(1)
# yy(2) = (y(1) + y(2) + y(3))/3
# yy(3) = (y(1) + y(2) + y(3) + y(4) + y(5))/5
# yy(4) = (y(2) + y(3) + y(4) + y(5) + y(6))/5
# ...

def smooth(a,WSZ):
  # a:原始数据,NumPy 1-D array containing the data to be smoothed
  # 必须是1-D的,如果不是,请使用 np.ravel()或者np.squeeze()转化 
  # WSZ: smoothing window size needs, which must be odd number,
  # as in the original MATLAB implementation
  out0 = np.convolve(a,np.ones(WSZ,dtype=int),'valid')/WSZ
  r = np.arange(1,WSZ-1,2)
  start = np.cumsum(a[:WSZ-1])[::2]/r
  stop = (np.cumsum(a[:-WSZ:-1])[::2]/r)[::-1]
  return np.concatenate(( start , out0, stop ))

# another one,边缘处理的不好

"""
def movingaverage(data, window_size):
  window = np.ones(int(window_size))/float(window_size)
  return np.convolve(data, window, 'same')
"""

# another one,速度更快
# 输出结果 不与原始数据等长,假设原数据为m,平滑步长为t,则输出数据为m-t+1

"""
def movingaverage(data, window_size):
  cumsum_vec = np.cumsum(np.insert(data, 0, 0)) 
  ma_vec = (cumsum_vec[window_size:] - cumsum_vec[:-window_size]) / window_size
  return ma_vec
"""

以上这篇Python实现滑动平均(Moving Average)的例子就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python数据预处理之数据标准化的几种处理方式

python数据预处理之数据标准化的几种处理方式

何为标准化: 在数据分析之前,我们通常需要先将数据标准化(normalization),利用标准化后的数据进行数据分析。数据标准化也就是统计数据的指数化。数据标准化处理主要包括数据同趋...

PyCharm2018 安装及破解方法实现步骤

PyCharm2018 安装及破解方法实现步骤

PyCharm就是Python语言开发中一个很受欢迎的IDE,界面类似于visual studio,android studio,集成的功能也很多。 1>. 安装 首先要...

Python中的错误和异常处理简单操作示例【try-except用法】

Python中的错误和异常处理简单操作示例【try-except用法】

本文实例讲述了Python中的错误和异常处理操作。分享给大家供大家参考,具体如下: #coding=utf8 print ''''' 程序编译时会检测语法错误。 当检测到一个错误,解...

Python实现列表删除重复元素的三种常用方法分析

本文实例讲述了Python实现列表删除重复元素的三种常用方法。分享给大家供大家参考,具体如下: 给定一个列表,要求删除列表中重复元素。 listA = ['python','语','...

python处理json数据中的中文

python中自带了处理python的模块,使用时候直接import json即可。 使用loads方法即可将json字符串转换成python对象,对应关系如下: JSON ...