python 数据提取及拆分的实现代码

yipeiwu_com6年前Python基础

K线数据提取

#### 原有数据集如下:

依据原有数据集格式,按要求生成新表:

1、每分钟的close数据的第一条、最后一条、最大值及最小值,

2、每分钟vol数据的增长量(每分钟vol的最后一条数据减第一条数据)

3、汇总这些信息生成一个新表

(字段名:[‘time',‘open',‘close',‘high',‘low',‘vol'])

import pandas as pd 
import time 
start=time.time()
df=pd.read_csv('data.csv')
df=df.drop('id',axis=1)    #删除id列 
df1=pd.DataFrame(columns=['time','open','close','high','low','vol'])#新建目标数据表

for i in df.groupby('time'):   #按时间分组
  new_df=pd.DataFrame(columns=['time','open','close','high','low','vol']) #新建空表用于临时转存要求数据
  new_df.time=i[1].time[0:1]  #取每组时间为新表时间
  new_df.open=i[1].close[0:1]  #取每组第一个close数据为新表open数据
  new_df.close=i[1]['close'].iloc[-1]  #取每组最后一个close数据为新表close数据
  new_df.high=i[1]['close'].max()  #取每组close数据最大值为新表hige数据
  new_df.low=i[1]['close'].min()  #取每组close数据最小值为新表low数据
  new_df.vol=i[1]['vol'].iloc[-1] - i[1]['vol'].iloc[0] #用每组vol数据最大值减去最小值为新表vol数据
  df1=pd.concat([new_df,df1],axis=0)  #纵向合并数据到目标数据表
  
df2=df1.sort_values('time')  #按time列值进行排序
df2.reset_index(inplace=True, drop=True)  #重置行索引
print(df2)  #打印目标数据表
stop=time.time()  #查看耗时
print('共计耗时:{}秒'.format(stop-start))

在这里插入图片描述

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python的多重继承的理解

python的多重继承的理解

python的多重继承的理解 Python和C++一样,支持多继承。概念虽然容易,但是困难的工作是如果子类调用一个自身没有定义的属性,它是按照何种顺序去到父类寻找呢,尤其是众多父类中有多...

Python编程中用close()方法关闭文件的教程

 close()方法方法关闭打开的文件。关闭的文件无法读取或写入更多东西。文件已被关闭之后任何操作会引发ValueError。但是调用close()多次是可以的。 Python...

python中bytes和str类型的区别

经过一上午的查找资料。大概理清楚了bytes类型和str类型的区别。 bytes类型和str类型在呈现形式有相同之处,如果你print一个bytes类型的变量,会打印一个用b开头,用单引...

python 阶乘累加和的实例

阶乘:也是数学里的一种术语;阶乘指从1乘以2乘以3乘以4一直乘到所要求的数;在表达阶乘时,就使用“!”来表示。如h阶乘,就表示为h!;阶乘一般很难计算,因为积都很大。 提问:求1+2!+...

Python中datetime模块参考手册

前言 Python提供了多个内置模块用于操作日期时间,像 calendar,time,datetime。time模块提供的接口与C标准库 time.h 基本一致。相比于 time 模块,...