python 数据提取及拆分的实现代码

yipeiwu_com5年前Python基础

K线数据提取

#### 原有数据集如下:

依据原有数据集格式,按要求生成新表:

1、每分钟的close数据的第一条、最后一条、最大值及最小值,

2、每分钟vol数据的增长量(每分钟vol的最后一条数据减第一条数据)

3、汇总这些信息生成一个新表

(字段名:[‘time',‘open',‘close',‘high',‘low',‘vol'])

import pandas as pd 
import time 
start=time.time()
df=pd.read_csv('data.csv')
df=df.drop('id',axis=1)    #删除id列 
df1=pd.DataFrame(columns=['time','open','close','high','low','vol'])#新建目标数据表

for i in df.groupby('time'):   #按时间分组
  new_df=pd.DataFrame(columns=['time','open','close','high','low','vol']) #新建空表用于临时转存要求数据
  new_df.time=i[1].time[0:1]  #取每组时间为新表时间
  new_df.open=i[1].close[0:1]  #取每组第一个close数据为新表open数据
  new_df.close=i[1]['close'].iloc[-1]  #取每组最后一个close数据为新表close数据
  new_df.high=i[1]['close'].max()  #取每组close数据最大值为新表hige数据
  new_df.low=i[1]['close'].min()  #取每组close数据最小值为新表low数据
  new_df.vol=i[1]['vol'].iloc[-1] - i[1]['vol'].iloc[0] #用每组vol数据最大值减去最小值为新表vol数据
  df1=pd.concat([new_df,df1],axis=0)  #纵向合并数据到目标数据表
  
df2=df1.sort_values('time')  #按time列值进行排序
df2.reset_index(inplace=True, drop=True)  #重置行索引
print(df2)  #打印目标数据表
stop=time.time()  #查看耗时
print('共计耗时:{}秒'.format(stop-start))

在这里插入图片描述

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

PyQt5重写QComboBox的鼠标点击事件方法

最近学PyQt5,想要做一个串口调试助手来练练手,之前用了正点原子的串口上位机,觉得点击ComboBox自动检测串口这个功能很棒,之前用QT5写串口调试助手的时候也想加入这个功能,但是一...

Python实现使用卷积提取图片轮廓功能示例

Python实现使用卷积提取图片轮廓功能示例

本文实例讲述了Python实现使用卷积提取图片轮廓功能。分享给大家供大家参考,具体如下: 一、实例描述 将彩色的图片生成带边缘化信息的图片。 本例中先载入一个图片,然后使用一个“3通道输...

Python自动化运维之IP地址处理模块详解

实用的IP地址处理模块IPy 在IP地址规划中,涉及到计算大量的IP地址,包括网段、网络掩码、广播地址、子网数、IP类型等 别担心,Ipy模块拯救你。Ipy模块可以很好的辅助我们高效的...

对Pycharm创建py文件时自定义头部模板的方法详解

如下所示: # -*- coding: utf-8 -*- """ ------------------------------------------------- File...

python3 判断列表是一个空列表的方法

python3 判断空列表 @(python3) 有个判断列表是否为空的需求,试了好多方式,比如: a = [] if a is not None: COMMAND a =...