python 数据提取及拆分的实现代码

yipeiwu_com5年前Python基础

K线数据提取

#### 原有数据集如下:

依据原有数据集格式,按要求生成新表:

1、每分钟的close数据的第一条、最后一条、最大值及最小值,

2、每分钟vol数据的增长量(每分钟vol的最后一条数据减第一条数据)

3、汇总这些信息生成一个新表

(字段名:[‘time',‘open',‘close',‘high',‘low',‘vol'])

import pandas as pd 
import time 
start=time.time()
df=pd.read_csv('data.csv')
df=df.drop('id',axis=1)    #删除id列 
df1=pd.DataFrame(columns=['time','open','close','high','low','vol'])#新建目标数据表

for i in df.groupby('time'):   #按时间分组
  new_df=pd.DataFrame(columns=['time','open','close','high','low','vol']) #新建空表用于临时转存要求数据
  new_df.time=i[1].time[0:1]  #取每组时间为新表时间
  new_df.open=i[1].close[0:1]  #取每组第一个close数据为新表open数据
  new_df.close=i[1]['close'].iloc[-1]  #取每组最后一个close数据为新表close数据
  new_df.high=i[1]['close'].max()  #取每组close数据最大值为新表hige数据
  new_df.low=i[1]['close'].min()  #取每组close数据最小值为新表low数据
  new_df.vol=i[1]['vol'].iloc[-1] - i[1]['vol'].iloc[0] #用每组vol数据最大值减去最小值为新表vol数据
  df1=pd.concat([new_df,df1],axis=0)  #纵向合并数据到目标数据表
  
df2=df1.sort_values('time')  #按time列值进行排序
df2.reset_index(inplace=True, drop=True)  #重置行索引
print(df2)  #打印目标数据表
stop=time.time()  #查看耗时
print('共计耗时:{}秒'.format(stop-start))

在这里插入图片描述

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

详细介绍Python中的偏函数

Python的functools模块提供了很多有用的功能,其中一个就是偏函数(Partial function)。要注意,这里的偏函数和数学意义上的偏函数不一样。 在介绍函数参数的时候,...

快速解决安装python没有scripts文件夹的问题

安装Python2.7,好多次都不会产生scripts文件夹,导致无法使用pip。 折腾了一下,找到了解决办法。 让人无法接受的是,只要是我给的安装包一定不会产生scripts文件夹,所...

python用win32gui遍历窗口并设置窗口位置的方法

最近电脑打开某个软件却看不见窗口,在任务栏上看到软件明明已经运行,猜想一定是什么原因造成软件窗口位置偏离屏幕的有效坐标太远。尝试重启电脑,重装软件,都没有解决,看来是在注册表存储了位置信...

django 在原有表格添加或删除字段的实例

一、如果models.py文件为时: timestamp = models.DateTimeField('保存日期') 会提示: (env8) D:\Desktop\env8\...

Python查询IP地址归属完整代码

本文实例为大家分享了Python查询IP地址归属的具体代码,供大家参考,具体内容如下 #!/usr/bin/env python # -*- coding: utf-8 -*- #...