对Python 中矩阵或者数组相减的法则详解

yipeiwu_com6年前Python基础

最近在做编程练习,发现有些结果的值与答案相差较大,通过分析比较得出结论,大概过程如下:

定义了一个计算损失的函数:

def error(yhat,label):
 yhat = np.array(yhat)
 label = np.array(label)
 error_sum = ((yhat - label)**2).sum()
 return error_sum

主要出现问题的是 yhat - label 部分,要强调的是一定要保证两者维度是相同的!这点很重要,否则就会按照python的广播机制进行运算,举个例子:

a = np.array([1,2,3])
a0 = np.array([[1],[2],[3]])
b = np.array([2,3,5,])
print(b-a)
print(b-a0)

这里a的维度是(3,),因为是由列表转化成的数组(当然不是很推荐这种维度,因为很容易犯错),a0的维度是(3,1),b的维度是(3,),a与b的维度相同,在计算b-a的时候,结果显而易见:

b - a0 的结果:

产生这种结果的原因是因为由于维度不同,在计算的时候将b变为了与a0同样的3行的数组,变化后b的维度变为了(3,3),等同于如下的计算:

b = np.array([[2,3,5],
    [2,3,5],
    [2,3,5]])
a0 = np.array([[1],
    [2],
    [3]])
b - a0

结果仍然为:

以上这篇对Python 中矩阵或者数组相减的法则详解就是小编分享给大家的全部内容了,希望能给大家一个参考,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

Python cv2 图像自适应灰度直方图均衡化处理方法

Python cv2 图像自适应灰度直方图均衡化处理方法

__author__ = 'Administrator' import numpy as np import cv2 mri_img = np.load('mri_img.npy...

详解Django缓存处理中Vary头部的使用

Vary 头部定义了缓存机制在构建其缓存键值时应当将哪个请求头标考虑在内。 例如,如果网页的内容取决于用户的语言偏好,该页面被称为根据语言而不同。 缺省情况下,Django 的缓存系统使...

python中的随机函数小结

本系列不会对python语法,理论作详细说明;所以不是一个学习教材;而这里只是我一个学习python的某些专题的总结。 1. random()函数  描述:random()...

Python+MongoDB自增键值的简单实现

背景 最近在写一个测试工具箱,里面有一个bug记录系统,因为后台我是用Django和MongoDB来实现的,就遇到了一个问题,要如何实现一个自增的字段。 传统的关系型数据库要实现起来是非...

详解Python list 与 NumPy.ndarry 切片之间的对比

详解Python list 与 NumPy.ndarry 切片之间的区别 实例代码: # list 切片返回的是不原数据,对新数据的修改不会影响原数据 In [45]: list1...