Python中的相关分析correlation analysis的实现

yipeiwu_com5年前Python基础

相关分析(correlation analysis)

研究两个或两个以上随机变量之间相互依存关系的方向和密切程度的方法。
线性相关关系主要采用皮尔逊(Pearson)相关系数r来度量连续变量之间线性相关强度;
r>0,线性正相关;r<0,线性负相关;
r=0,两个变量之间不存在线性关系,并不代表两个变量之间不存在任何关系。

相关分析函数
DataFrame.corr()
Series.corr(other)

函数说明:
如果由数据框调用corr函数,那么将会计算每个列两两之间的相似度
如果由序列调用corr方法,那么只是该序列与传入的序列之间的相关度

返回值:
DataFrame调用;返回DataFrame

Series调用:返回一个数值型,大小为相关度

import numpy
import pandas
 
data = pandas.read_csv(
  'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
 
bins = [
  min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
]
labels = [
  '20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]
 
data['年龄分层'] = pandas.cut(
  data.年龄, 
  bins, 
  labels=labels
)
 
ptResult = data.pivot_table(
  values=['年龄'], 
  index=['年龄分层'], 
  columns=['性别'], 
  aggfunc=[numpy.size]
 File "<ipython-input-1-ae921a24967f>", line 25
  aggfunc=[numpy.size]
            ^
SyntaxError: unexpected EOF while parsing
 
 
import numpy
import pandas
 
data = pandas.read_csv(
  'C:/Users/ZL/Desktop/Python/5.4/data.csv'
)
 
bins = [
  min(data.年龄)-1, 20, 30, 40, max(data.年龄)+1
]
labels = [
  '20岁以及以下', '21岁到30岁', '31岁到40岁', '41岁以上'
]
 
data['年龄分层'] = pandas.cut(
  data.年龄, 
  bins, 
  labels=labels
)
 
ptResult = data.pivot_table(
  values=['年龄'], 
  index=['年龄分层'], 
  columns=['性别'], 
  aggfunc=[numpy.size]
)
 
ptResult
Out[4]: 
     size    
      年龄    
性别     女   男
年龄分层        
20岁以及以下  111  1950
21岁到30岁 2903 43955
31岁到40岁  735  7994
41岁以上   567  886

以上就是本文的全部内容,希望对大家的学习有所帮助,也希望大家多多支持【听图阁-专注于Python设计】。

相关文章

python 自定义装饰器实例详解

本文实例讲述了python 自定义装饰器。分享给大家供大家参考,具体如下: 先看一个例子 def deco(func): print("before myfunc() calle...

PyQt5每天必学之事件与信号

PyQt5每天必学之事件与信号

这一部分我们将探索 PyQt5 的事件和信号是如何在应用程序中实现的。 Events事件 所有的GUI应用程序都是事件驱动的。应用程序事件主要产生自用户,但它们也可通过其他方法来产生,例...

python 读文件,然后转化为矩阵的实例

代码流程: 1. 从文件中读入数据。 2. 将数据转化成矩阵的形式。 3. 对于矩阵进行处理。 具体的python代码如下: - 文件路径需要设置正确。 - 字符串处理。 - 字符串数...

详解Python3 中hasattr()、getattr()、setattr()、delattr()函数及示例代码数

hasattr()函数 hasattr()函数用于判断是否包含对应的属性 语法: hasattr(object,name) 参数: object--对象 name--字符串,属性名 返回...

Selenium+Python 自动化操控登录界面实例(有简单验证码图片校验)

Selenium+Python 自动化操控登录界面实例(有简单验证码图片校验)

从最简单的Web浏览器的登录界面开始,登录界面如下: 进行Web页面自动化测试,对页面上的元素进行定位和操作是核心。而操作又是以定位为前提的,因此,对页面元素的定位是进行自动化测试的基...