Python数学形态学实例分析

yipeiwu_com6年前Python基础

本文实例讲述了Python数学形态学。分享给大家供大家参考,具体如下:

一 原始随机图像

1、代码

import numpy as np
import matplotlib.pyplot as plt
square = np.zeros((32,32))#全0数组
square[10:20,10:20]=1#把其中一部分设置为1
x, y =(32*np.random.random((2,15))).astype(np.int)#随机位置
square[x,y]=1#把随机位置设置为1
plt.imshow(square)#原始随机图像
plt.show()

2、运行结果

二 开运算

1、代码

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage
square = np.zeros((32,32))#全0数组
square[10:20,10:20]=1#把其中一部分设置为1
x, y =(32*np.random.random((2,15))).astype(np.int)#随机位置
square[x,y]=1#把随机位置设置为1
open_square = ndimage.binary_opening(square)#开运算
plt.imshow(open_square)
plt.show()

2、运行结果

三 膨胀运算

1、代码

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage
square = np.zeros((32,32))#全0数组
square[10:20,10:20]=1#把其中一部分设置为1
x, y =(32*np.random.random((2,15))).astype(np.int)#随机位置
square[x,y]=1#把随机位置设置为1
eroded_square = ndimage.binary_erosion(square)#膨胀运算
plt.imshow(eroded_square)
plt.show()

2、运行结果

四 闭运算

1、代码

import numpy as np
import matplotlib.pyplot as plt
from scipy import ndimage
square = np.zeros((32,32))#全0数组
square[10:20,10:20]=1#把其中一部分设置为1
x, y =(32*np.random.random((2,15))).astype(np.int)#随机位置
square[x,y]=1#把随机位置设置为1
closed_square = ndimage.binary_closing(square)#闭运算
plt.imshow(closed_square)
plt.show()

2、运行结果

更多关于Python相关内容感兴趣的读者可查看本站专题:《Python数学运算技巧总结》、《Python数据结构与算法教程》、《Python函数使用技巧总结》、《Python字符串操作技巧汇总》及《Python入门与进阶经典教程

希望本文所述对大家Python程序设计有所帮助。

相关文章

Python实现i人事自动打卡的示例代码

Python实现i人事自动打卡的示例代码

我司使用的打卡软件是 i 人事,不过我这记性,经常漏了打卡签退,定了闹钟都会忘,今天又被老大屌了。于是准备抓一下签到接口,利用 crontab 来实现自动签到签退。 环境配置 这里使用的...

tensorflow TFRecords文件的生成和读取的方法

TensorFlow提供了TFRecords的格式来统一存储数据,理论上,TFRecords可以存储任何形式的数据。 TFRecords文件中的数据都是通过tf.train.Examp...

Python imread、newaxis用法详解

这篇文章主要介绍了python imread、newaxis用法详解,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 一:imread...

TensorFlow实现卷积神经网络

TensorFlow实现卷积神经网络

本文实例为大家分享了TensorFlow实现卷积神经网络的具体代码,供大家参考,具体内容如下 代码(源代码都有详细的注释)和数据集可以在github下载: # -*- codin...

python生成tensorflow输入输出的图像格式的方法

TensorFLow能够识别的图像文件,可以通过numpy,使用tf.Variable或者tf.placeholder加载进tensorflow;也可以通过自带函数(tf.read)读取...