Pytorch中accuracy和loss的计算知识点总结

yipeiwu_com5年前Python基础

这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
  train_loss = 0
  train_acc = 0
  num_correct= 0
  for step, (x,y) in enumerate(train_loader):

    # x: [b, 3, 224, 224], y: [b]
    x, y = x.to(device), y.to(device)

    model.train()
    logits = model(x)
    loss = criteon(logits, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    train_loss += float(loss.item())
    train_losses.append(train_loss)
    pred = logits.argmax(dim=1)
    num_correct += torch.eq(pred, y).sum().float().item()
  logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
  return num_correct/len(train_loader.dataset), train_loss/len(train_loader)

首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

以上就是本次介绍的全部知识点内容,感谢大家对【听图阁-专注于Python设计】的支持。

相关文章

对Python的多进程锁的使用方法详解

很多时候,我们需要在多个进程中同时写一个文件,如果不加锁机制,就会导致写文件错乱 这个时候,我们可以使用multiprocessing.Lock() 我一开始是这样使用的: impo...

python3.6下Numpy库下载与安装图文教程

python3.6下Numpy库下载与安装图文教程

今天在做Plotly的散点图时,需要Numpy 这个库的使用。 没有安装Numpy这个库的时候,报错一般是下图这样:ModuleNotFoundError: No module name...

基于Django filter中用contains和icontains的区别(详解)

qs.filter(name__contains="e") qs.filter(name__icontains="e") 对应sql 'contains': 'LIKE BI...

浅谈python3中input输入的使用

浅谈python3中input输入的使用

今天谈一下关于python中input的一些基本用法(写给新手入门之用,故只谈比较实用的部分)。 首先,我们可以看一下官方文档给我们的解释(在python的shell中输入命令即可):...

Python 获得13位unix时间戳的方法

在python 开发web程序时,需要调用第三方的相关接口,在调用时,需要对请求进行签名。需要用到unix时间戳。 在python里,在网上介绍的很多方法,得到的时间戳是10位。而ja...