Pytorch中accuracy和loss的计算知识点总结

yipeiwu_com6年前Python基础

这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
  train_loss = 0
  train_acc = 0
  num_correct= 0
  for step, (x,y) in enumerate(train_loader):

    # x: [b, 3, 224, 224], y: [b]
    x, y = x.to(device), y.to(device)

    model.train()
    logits = model(x)
    loss = criteon(logits, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    train_loss += float(loss.item())
    train_losses.append(train_loss)
    pred = logits.argmax(dim=1)
    num_correct += torch.eq(pred, y).sum().float().item()
  logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
  return num_correct/len(train_loader.dataset), train_loss/len(train_loader)

首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

以上就是本次介绍的全部知识点内容,感谢大家对【听图阁-专注于Python设计】的支持。

相关文章

画pytorch模型图,以及参数计算的方法

画pytorch模型图,以及参数计算的方法

刚入pytorch的坑,代码还没看太懂。之前用keras用习惯了,第一次使用pytorch还有些不适应,希望广大老司机多多指教。 首先说说,我们如何可视化模型。在keras中就一句话,k...

详解Python之数据序列化(json、pickle、shelve)

一、前言 1. 现实需求 每种编程语言都有各自的数据类型,其中面向对象的编程语言还允许开发者自定义数据类型(如:自定义类),Python也是一样。很多时候我们会有这样的需求: 把内...

Python3实现zip分卷压缩过程解析

Python3实现zip分卷压缩过程解析

使用zipfile库 查看 官方中文文档 利用 Python 压缩 ZIP 文件,我们第一反应是使用 zipfile 库,然而,它的官方文档中却明确标注“此模块目前不能处理分卷 ZIP...

django admin添加数据自动记录user到表中的实现方法

1.需求:在后台添加一条数据的同时要把添加者记录到表中。 2.models.py class Setting(models.Model): ... user =...

python通过ssh-powershell监控windows的方法

本文实例讲述了python通过ssh-powershell监控windows的方法。分享给大家供大家参考。具体分析如下: 对于服务器的监控来说,监控linux不管是自己动手写脚本还是用一...