Pytorch中accuracy和loss的计算知识点总结

yipeiwu_com6年前Python基础

这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
  train_loss = 0
  train_acc = 0
  num_correct= 0
  for step, (x,y) in enumerate(train_loader):

    # x: [b, 3, 224, 224], y: [b]
    x, y = x.to(device), y.to(device)

    model.train()
    logits = model(x)
    loss = criteon(logits, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    train_loss += float(loss.item())
    train_losses.append(train_loss)
    pred = logits.argmax(dim=1)
    num_correct += torch.eq(pred, y).sum().float().item()
  logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
  return num_correct/len(train_loader.dataset), train_loss/len(train_loader)

首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

以上就是本次介绍的全部知识点内容,感谢大家对【听图阁-专注于Python设计】的支持。

相关文章

详解用python实现基本的学生管理系统(文件存储版)(python3)

这个是升级的版本,比较进阶一点的,相对与之前的文件管理系统,数据只是存储到了内存中,而不是存储到硬盘上,我们想让文件存储到硬盘上的话,一个是存储到文件里,一个是存储到数据库中,存储到数据...

pycharm创建scrapy项目教程及遇到的坑解析

pycharm创建scrapy项目教程及遇到的坑解析

前言 最近学习scrapy爬虫框架,在使用pycharm安装scrapy类库及创建scrapy项目时花费了好长的时间,遇到各种坑,根据网上的各种教程,花费了一晚上的时间,终于成功,其中也...

Python如何获取Win7,Win10系统缩放大小

这篇文章主要介绍了Python如何获取Win7,Win10系统缩放大小,文中通过示例代码介绍的非常详细,对大家的学习或者工作具有一定的参考学习价值,需要的朋友可以参考下 使用pywin3...

Python实现按当前日期(年、月、日)创建多级目录的方法

Python实现按当前日期(年、月、日)创建多级目录的方法

先看实际效果,现在时间2018.4.26 使用python脚本按照年月日生成多级目录,创建的目录可以将系统生成的日志文件放入其中,方便查阅,代码如下: #!/usr/bin/env...

python实现电脑自动关机

0、前言 在以前读书的时候,实验室里面要求每天都要关电脑,有时候出去玩得晚了,懒得回实验室关电脑,又没有同学帮忙。于是就想,能不能通过什么手段实现远程关闭电脑。在网上搜索一番后,决定用...