Pytorch中accuracy和loss的计算知识点总结

yipeiwu_com5年前Python基础

这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
  train_loss = 0
  train_acc = 0
  num_correct= 0
  for step, (x,y) in enumerate(train_loader):

    # x: [b, 3, 224, 224], y: [b]
    x, y = x.to(device), y.to(device)

    model.train()
    logits = model(x)
    loss = criteon(logits, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    train_loss += float(loss.item())
    train_losses.append(train_loss)
    pred = logits.argmax(dim=1)
    num_correct += torch.eq(pred, y).sum().float().item()
  logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
  return num_correct/len(train_loader.dataset), train_loss/len(train_loader)

首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

以上就是本次介绍的全部知识点内容,感谢大家对【听图阁-专注于Python设计】的支持。

相关文章

Pandas+Matplotlib 箱式图异常值分析示例

我就废话不多说了,直接上代码吧! # -*- coding: utf-8 -*- import pandas as pd import matplotlib.pyplot as...

Python序列对象与String类型内置方法详解

本文实例讲述了Python序列对象与String类型内置方法。分享给大家供大家参考,具体如下: 前言 在Python数据结构篇中介绍了Python的序列类型数据结构,这次继续深入的学习序...

python实现在cmd窗口显示彩色文字

python实现在cmd窗口显示彩色文字

新手小白,一直在为cmd窗口的暗白色文字感到苦恼,在网上找了许多方法(也就那两种吐舌头),现在稍微整理了一下,便于使用。 效果图: import ctypes STD_INPU...

python+pandas分析nginx日志的实例

python+pandas分析nginx日志的实例

需求 通过分析nginx访问日志,获取每个接口响应时间最大值、最小值、平均值及访问量。 实现原理 将nginx日志uriuriupstream_response_time字段存放到pan...

对python中for、if、while的区别与比较方法

如下所示: if应用举例: #if 若条件成立,只执行一次 #if 条件:如果条件成立,执行条件后的代码块内容,不成立,直接跳过代码块 #判断如果年龄age小于18,输出未成年 #=...