Pytorch中accuracy和loss的计算知识点总结

yipeiwu_com6年前Python基础

这几天关于accuracy和loss的计算有一些疑惑,原来是自己还没有弄清楚。

给出实例

def train(train_loader, model, criteon, optimizer, epoch):
  train_loss = 0
  train_acc = 0
  num_correct= 0
  for step, (x,y) in enumerate(train_loader):

    # x: [b, 3, 224, 224], y: [b]
    x, y = x.to(device), y.to(device)

    model.train()
    logits = model(x)
    loss = criteon(logits, y)

    optimizer.zero_grad()
    loss.backward()
    optimizer.step()
    train_loss += float(loss.item())
    train_losses.append(train_loss)
    pred = logits.argmax(dim=1)
    num_correct += torch.eq(pred, y).sum().float().item()
  logger.info("Train Epoch: {}\t Loss: {:.6f}\t Acc: {:.6f}".format(epoch,train_loss/len(train_loader),num_correct/len(train_loader.dataset)))
  return num_correct/len(train_loader.dataset), train_loss/len(train_loader)

首先这样一次训练称为一个epoch,样本总数/batchsize是走完一个epoch所需的“步数”,相对应的,len(train_loader.dataset)也就是样本总数,len(train_loader)就是这个步数。

那么,accuracy的计算也就是在整个train_loader的for循环中(步数),把每个mini_batch中判断正确的个数累加起来,然后除以样本总数就行了;

而loss的计算有讲究了,首先在这里我们是计算交叉熵,关于交叉熵,也就是涉及到两个值,一个是模型给出的logits,也就是10个类,每个类的概率分布,另一个是样本自身的

label,在Pytorch中,只要把这两个值输进去就能计算交叉熵,用的方法是nn.CrossEntropyLoss,这个方法其实是计算了一个minibatch的均值了,因此累加以后需要除以的步数,也就是

minibatch的个数,而不是像accuracy那样是样本个数,这一点非常重要。

以上就是本次介绍的全部知识点内容,感谢大家对【听图阁-专注于Python设计】的支持。

相关文章

Python通过递归遍历出集合中所有元素的方法

本文实例讲述了Python通过递归遍历出集合中所有元素的方法。分享给大家供大家参考。具体实现方法如下: 复制代码 代码如下:'''''通过递归遍历出集合中的所有元素 Created o...

python中异常报错处理方法汇总

python中异常报错处理方法汇总

首先异常是什么,异常白话解释就是不正常,程序里面一般是指程序员输入的格式不规范,或者需求的参数类型不对应,不全等等。 Python中异常是指程序中的例外,违例情况。异常机制是指程序出现错...

python实现图书借阅系统

本文实例为大家分享了python实现图书借阅系统的具体代码,供大家参考,具体内容如下 部分代码: from flask import Flask,render_template fr...

Appium+Python自动化测试之运行App程序示例

Appium+Python自动化测试之运行App程序示例

在上一篇博客中,已经将环境搭建好了。现在,我们利用搭建的环境来运行一条测试脚本,脚本中启动一个计算器的应用,并实现加法的运算。 创建模拟器 在运行App之前,首先需要创建一个Androi...

一篇文章了解Python中常见的序列化操作

0x00 marshal marshal使用的是与Python语言相关但与机器无关的二进制来读写Python对象的。这种二进制的格式也跟Python语言的版本相关,marshal序列化...